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m Global Context & Challenges

m Renewable Energy

m Power Electronics 4.0: Do More with Less
m Power Electronics 5.0: Zero Waste
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Future Growth of Energy Demand
m Relation of energy use & GDP/capita — There are no low-energy rich countries (!)
m Population growth and energy use per capita increase — 1980: 4.4 bn, 10 TW yr = 2022: 8 bn, 20.4 TW yr

Global population size: estimates for 1700-2022 and
Energy use per person vs. GDP per capita, 2022 projections for 2022-2100

Energy refers to primary energy’, measured in kilowatt-hours® per person, using the substitution method®. Gross

domestic product (GDP) is adjusted for inflation and differences in the cost of living between countries. 5 ]
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Source: United Nations, DESA, Population Division (2022). World Population

Prospects 2022.
m Growing population & GDP — Increasing demand for energy services in developing countries TRANSIIONS

m +22% Population | +92% GDP/capita | -37% Energy intensity = +50% Energy demand by 2040 globally
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Global Energy Use Today

m Global energy flows 2021

Source: IEA / Energy Technology Perspectives 2023
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m Direct fossil fuel use
in essential industries

e Transportation

e Chemicals (e.g., fertilizer)

e Steel production
e Cement production

Ships
Coal Aircrafts
—— Other transport
Chemicals
Industry,
L
: Iron and steel
Natural gas N0
) \ Cement
) 4 = S Other industry
~ / : WA . > Buildings
Bioenergy N . : . - : \ 7 J
Other renewabl > S Agriculture. B Residential
From hydrogen — , = '
g To other transformation
From power and heat " Non-energy use Services
P Losses
Hydro 2N Losses
Solar PV \ Loy
Wind
Nuclear

m 2/3 power/heat generated from fossil
fuels with low efficiency

m Fossil fuels account for ® 80% of world’s primary energy consumption
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Consequences of Fossil Fuel Use
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m Air pollution — E.g., fine particulate matter (PM2.5) responsible for 8.7 mio. deaths p. a. globally

m Climate change — E.g., 200 mio. people will live below sea level line by 2100

Global surface temp. increase vs. cum. CO, emissions
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m High import dependency of leading economies (e.g., Europe and Russian gas)
m As finite resources, fossil fuels are unable to sustain economic development in the long run (!)

@ 2°C Temp. Increase

Where Most People Are
Affected by Rising Sea Levels

Number of people per country living on land expected
to be under sea level by 2100
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W 1-9 million

W 500,000-999,000
100,000-499,000
= <100,000 @g
No data i P
* assuming a rise in sea levels of 50-70 cm (2° C temperature increase/not taking
into account ice sheet instability)

Source: Scott A. Kulp & Benjamin H. Strauss: New elevation data triple estimates of
global vulnerability to sea-level rise and coastal flooding, Nature Communications

®©@®06 statista%a




M1 Spanced Mechatronic ETH:zurich

The Opportunity

8500 GW
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(2009) 16 TW-yr — @ 1 — 27 TW-yr (2050) m Outlook of global cumulative install. until 2050
e In 2050 deployment of 370 G\W/yr (PV) and
Renewable énergy resources per year 200 GW/yr (onshore wind) incl. replacements
Source: IRENA, Future of Wind / Future of Solar PV (2019)
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m Challenges
Primary consumption: ([ Energy Storage (ShOI’t-tel’m, Seasonal)
16 TWyr >27 Twyr otal : Ui Petroleum 1 11 1 1
Final consumption: 0300wy Il T e |Long-distance electricity transmission
e Sector coupling / Power-to-X

11 TWyr > 15 TWyr total

Source: R. Perez et al., [IEA SHC Program Solar Update (2009)
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Net-Zero Multi-Carrier Energy Systems

m CO,-free electricity / electrification / efficiency gains — Reducing emissions & costs (long term)
m Not all-electric — Iron & steel, cement, transportation, heating > Power-to-X and E-fuels w. low efficiency
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m Renew. gen. & cross-sector convers. — Heat pumps / electrolyzers / fuel cells / ... 2 All dep. on power electron.
m Power electronics @ is a key enabling technology!
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-0 Source:
S.). Davis et al., Science (2018)
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Critical Minerals/Metals

m Minerals/metals supply shortages due to massive expansion of clean energy system
m Extraction & processing more geographically concentrated than for oil & gas (!)

Figure 1: Market balances for energy transition metals under BNEF’s Economic Transition Scenario and Net
Zero Scenario — expected supply surplus and supply deficits

Metal Scenario 2024-2030 2031-2040 2041-2050
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Source: BloombergNEF. Note: Year is the first year in which a given metal is expected to enter a supply deficit. Only
primary supply is considered in this table. All supply is mined nameplate capacity, apart from that for aluminum,
graphite, and steel.
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Source: IEA / The Role of Critical Minerals in Clean Energy Transitions (2021)

m 50 new lithium / 60 nickel / 17 cobalt mines required to meet 2030 EV battery demand
m EU Critical Raw Material (CRM) Act 2024 - Sustainability & circularity of CRMs on the EU Market
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Energy Return on Energy Invested (EROEI)

m Energy supply must provide sufficient energy surplus after accounting for own energy requirements
(energy invested for production / transformation / transportation)

Energy Obtained . 1
EROI = : : -> Net Energy = Energy Obtained - ( 1 — ——
Energy required to obtain that energy EROEI
EROEI
Source: J. G. Lambertet al. / 2024
: ; DOI: 10.1016/j.enpol.2013.07.001
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Source: K. Zhao et al. / 2021
doi.org/10.1007/s41247-021-00094-7

m “Pyramids of Energy Needs” — Higher EROEI values enable medical care/education/technology innovation/art, etc.
m “Net Energy Cliff” — Minimum EROEI = 5...10 required to maintain a complex industrial society
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Power Electronics 4.0: “Do More with Less”

m Today’s power electronics innovation basically contributes to lower environmental impact

TIME-TO-MARKET
(Custom Designs) POWER DENSITY

e Power Density > Red. of resources

e Efficiency - Red. of energy use
e Robustness - Increased lifetime
\ SWITCHING
COSsT 5/ FREQUENCY
250%
v
/e Sl
4 SOURGCE:
Maqufaclurcz".:‘;;:cni:lrf;; i POWER SOURCES
e o 5 POWER LOSS RELIABILITY (MTBF) MANUFACTURERS ASSOC.

m New set of KPls mandatory to meet future environmental protection objectives
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Multi-Objective Opt. with Environmental Impact KPls

m Three-phase ac-dc PEBB with LC input filter, 800 V dc, 10 kW — Different bridge-leg realizations
2L./1200VSiC 3L/650VSiC  7L/200VSi

GWP: Global warming potential (“carbon footprint”)

(l) DESQ: Damage to ecosystems
r Jok DHH: Damage to human health ReCiPe 2016
Ji J DRA: Damage to resource availability
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m Embod. env. footprint of 2L/3L/7L-designs with n = 99% and max. env. compat. g, in W/ kg CO,eq
m Same efficiency via different usage of act./pass. components — Different environmental impact profile!

ETH:zurich
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Power Electronics 5.0: “Zero Waste”

m Including 4R into the design process — Repair / Reuse / Refurbish / Recycle
m Lifetime extension / reliability considerations are a key design aspect

Losses L Losses L
Primary Raw. Mat.<> 0SSes Primary Raw. Matﬁ) 0SSes
2 »| Raw Material J »| Raw Material J
Waste Sourcing Sourcing
¢—\ g:svonﬁ:{y A Recycling ”
End-of-Life 5 : End-of-Life - :
Management ~— T 7 | Production Management | ~—2©sl9n | Production

Remanufacture LL. ‘ Remanufacture LL(;sses
~~ &Refubish psses S &Refubish
Collection Reuse Distribution Collection Reuse Distribution

\ Losses \ Losses
Use Phase Use Phase
Losses Losses

thterlng thterlng

m How to quantify repairability / reusability / ...?
m Value proposition through life-cycle cost perspective (suppliers and customers)?

12
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Design for Repairability & Circularity

m Eco-desigh — Reduce environmental impact of products, incl. life-cycle energy consumption
m Re-pair / Re-use / Re-cycle / disassembly / sorting & max. material recovery, etc. considered
m EU eco-design directive (!)

Source:
www.ligman.com/

Source: https://de.ifixit.com/ Source: Life Cycle Assessment of the Framework Laptop 2022, Fraunhofer IZM

m FAIRPHONE — Modular design / man. replaceable parts / 100% recycl. of sold products / fairtrade materials
m QO framework laptop “You should be able to fix your stuff.” — Modular design / man. replaceable parts

m “80% of environmental impact of products are locked-in at the design stage” — 1. thackara,in the bubbie: Designingin a complex
world. Cambridge, MA, USA: The MIT Press, 2006.
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CEC Power Electronics Roadmap

m Environmental awareness as integral part of environmentally conscious power electronics design

Circular-Economy-Compatible (CEC)
Power Electronics

“Net-Zero CO, is NOT Enough” '
- Max. Repairability | Reusability | Recyclability i
- Min. scarce materials, min. toxic waste
- Max. lifetime/reliability

Full Environmental Footprint

. BaS€d on Smart Datasheets
- Seamless integr. of comp. models in multi-obj. opt.

L. - Full a priori LCIA / environmental footprint
Generic Life-Cycle - Standardization / single source of truth
Impact Analysis (LCIA)
- New KPlIs in multi-obj. opt.
- Data sources / quality / abstraction /

generalization as key challenges Classical np-Pareto Optimization / Design

- Manual a posteriori LCA of complete converters

m Automated design | On-line monitoring | Preventive maintenance | Digital product passport

Cg& 14
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Thank You!
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