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Abstract—The use of magnetic bearings in electrical drive
systems enable very long lifetimes at highest speeds and the
operation in high-purity or vacuum environments. The machine
prototype presented in this paper overcomes several limitations of
previously presented high-speed magnetically-levitated electrical
drive systems. Linear bearing characteristics result from the
slotless design, which enables applying linear state feedback con-
trol without linearization of bearing actuators. A multivariable
rotor position control scheme is proposed and its controller
performance is analyzed in details. The implemented control
scheme proved to perform well in practice, stabilizing the system
over the design speed range of the motor with a single set of
controller parameters. Measurements of the motor spinning at
500 000 revolutions per minute (rpm) verify the functionality of
the overall system. To the authors’ knowledge, this is the highest
speed achieved by magnetically-levitated electrical drive systems
so far.

I. INTRODUCTION

In the last few years, several studies dealing with the design

of high-speed electrical drive systems have been published,

e.g. [1], [2]. However, the use of today’s ultra-high-speed

systems in industrial applications has been limited, mainly

by the absence of reliable bearings for rotor support and

long lifetime of several thousand hours. Promising candidates

for high-speed bearings with longer lifetimes are contactless

concepts such as active magnetic bearings (AMB) or gas

bearings. The focus of this paper is the magnetic bearing, as it

is the only contactless bearing technology that can be operated

in vacuum or low-pressure environments, such as high-speed

optical scanning systems or reaction wheels for attitude control

of satellites in orbit.

Most AMB systems built today rely on reluctance force

which is generated by guiding a magnetic flux over the air gap

between the rotor and the stator. This flux is actively controlled

by controlling the bearing winding currents. In the present

paper, this bearing topology will be referred to as reluctance-

force-based AMB. In contrast, Lorentz-force-based AMB rely

on an external magnetic flux density (typically generated by a

permanent magnet on the rotor) and electric current densities

in bearing windings. The windings are placed in the magnetic

air gap of the external flux density. Thus, the bearing force

generation is mainly based in Lorentz force in the bearing

windings [3], [4].

Several magnetic bearing concepts for rotational speeds

beyond 100 000 revolutions per minute (rpm) have been inves-

tigated recently. Reluctance-force-based homopolar bearings

are presented in [5] and [6]. In [5], a magnetically-levitated

milling spindle is presented that achieved a speed of 150 krpm.

In [6], a 2 kW machine was operated up to a speed of

120 krpm. In [7], a combined radial-axial reluctance-force-

based bearing is presented that was tested up to 120 krpm.

However, one of the limitations of achievable actuator band-

width of reluctance-force-based AMB results from eddy cur-

rents in the magnetic circuit’s lamination [8]. Furthermore,

slot harmonic induced iron losses in the rotor increase with

the rotational speed [8], [9]. Due to the poor thermal coupling

of the levitated rotor to the rest of the drive system, these

losses are crucial. Therefore, a downscaling of a reluctance-

force-based AMB system to reach higher rotational speeds is

limited amongst others factors by the high rotor losses.

The maximum bearing force of slotless and thus Lorentz-

force-based AMB systems is small compared to reluctance-

force-based AMB systems [3]. On the other hand, the slotless

design of the windings allows to control bearing forces up to

high bandwidths [4]. Furthermore, low rotor losses allow for

high-speed rotation. Self-bearing motors enable an integration

of motor and magnetic bearing what reduces the total length

of the rotor when compared to non-integrated AMB systems.

The length reduction increases the bending mode frequencies

which is beneficial for rotor dynamics of high-speed motors

[8]. Similarly to the motor concept proposed in this paper, a

slotless and thus Lorentz-force-based high-speed self-bearing

motor is presented in [10]. In contrast to the proposed design,

a short (slice) rotor was chosen in [10]. Therefore, only

two degrees of freedom (DOF) have to be controlled by

the magnetic bearing. One DOF is controlled by the motor

and three DOF are stabilized passively by reluctance force.

The maximum achieved speed of 115 krpm is limited by the

mechanical construction of the rotor [10]. A downscaling of

the slice motor to reach higher rotational speeds is limited by

the passive stabilization of three DOF. The concept of slotless

self-bearing motors is applied in [11]–[14] for lower speed

applications.

A large variety of methods are proposed in literature for the

control of AMB [8]. Generally, a fair and credible comparison

of control methods is a very difficult task, as the control

performance highly depends on the selection of control pa-

rameters. A comparison between centralized and decentralized
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Fig. 1: Simplified machine cross-section through the axis of rotation.
The rotor consists of a titanium shaft in which three cylindrical
permanent magnets are press fitted. The magnetization direction
of the permanent magnets is indicated by the arrows. A slotless
amorphous-iron stack is used as stator core. The bearing windings
and the motor winding are placed in the magnetic air gap between
the rotor and the stator core.

and also between proportional integral derivative (PID) and

linear quadratic (LQ) control methods is presented in [15].

In all cases that were studied in [15], the centralized model-

based controllers performed better when compared with the

decentralized PID-based solutions.

In many AMB systems built today, particularly in industrial

practice, PID regulators are implemented, e.g. [7]. Typically,

different regulators are used for different states of the multiple-

input multiple-output (MIMO) control problem. Most con-

trol algorithms require information of non-measurable system

states like radial rotor velocities. Therefore, non-observer

based control structures are prone to high-frequency measure-

ment noise that is amplified by the differential part of the

controller [16].

The authors of [16] showed that the control performance

and the measurement noise rejection of an AMB system can be

significantly improved by applying linear quadratic Gaussian

(LQG) control algorithm for decentralized magnetic bearing

control. In [17], LQ control is presented that is based on

a flexible rotor model for an AMB system employing non-

linear bearing actuators. In [18], several approaches (including

LQR) for the control of a flywheel energy storage device are

analyzed. A cross feedback control was selected in [18] due

to the strong gyroscopic couplings.

In this paper, the control of a magnetically supported

500 krpm - 300 W motor is presented and measurement results

are shown. The focus of this paper is the design of the bearing

actuators, the radial rotor position controller and the closed-

loop system control performance achieved by the implemented

prototype.

The machine prototype is designed for driving optical

components such as mirrors in scanning applications. Due

to the magnetic bearing, the motor features long lifetime at

highest rotational speeds. Furthermore, it can be operated in

high-purity or vacuum environments.

Tab. I: Mechanical properties of the implemented motor prototype.

Symbol Quantity Value
nmax Maximum rotational speed 500 000 rpm

Pmotor Rated motor power 300W

m Rotor mass 12.3 g

Lrotor Rotor length 55mm

Drotor Rotor diameter 7.3mm

xmax Maximum rotor deflection 0.25mm

Rotor position sensor

Vacuum flange

Axial magnetic bearing Rotor

Stator

Radial magnetic bearing

Fig. 2: Photo of the implemented self-bearing motor with dismantled
rotor, axial and radial magnetic bearing.

II. INTEGRATED BEARING DESIGN

The machine concept of the implemented prototype motor

is based on a permanent-magnet synchronous motor (PMSM)

proposed in [19]. The magnetic bearing concept is proposed

in [3].

A simplified cross-section of the machine is shown in Fig. 1.

The mechanical data of the prototype is given in Tab. I and

picture with dismantled magnetic bearing is shown in Fig. 2.

As shown in Fig. 1, a titanium shaft in which three

cylindrical permanent magnets are press fitted is used as rotor

of the machine. The magnetic air gap between the rotor and the

slotless amorphous-iron stator core is used to place a motor

winding and a set of bearing windings. The magnetic field

of the two diametrically-magnetized permanent magnets is

used for drive torque and radial bearing force generation. The

magnetic field of the axially-magnetized permanent magnet is

used for the generation of axial bearing force.

Three important effects result from the slotless construction

of the windings. Firstly, linear and frequency independent
force/torque-to-winding current relationships result. Secondly,

simulations have shown that the rotor eddy-current losses

caused by the magnetic field of the bearing windings are

negligible. Thirdly, the resulting winding inductances are small

compared to slotted designs. Therefore, the bearing currents

can be controlled with low reactive power consumption,

and low-voltage power electronics using ultra-fast switching

frequencies [4]. As a consequence, high bearing actuator

bandwidths can be achieved. The listed effects are favorable

for ultra-high-speed operation of the machine.

348



Motor Winding

Radial Bearing

Axial Bearing

PMSM

Angular Position
Sensor

Rotor Displacement
Sensor

P
W
M

R
ef
er
en

ce
C
u
rr
en

ts

Inverters

HardwareSoftware

LQG Rotor
Position Controller

Current
Controller

Fig. 3: Control block diagram of the high-speed self-bearing motor
[4]. The rotor position is controlled in an outer control loop, whereas
the reference winding currents are tracked in an inner control loop.

A. Radial Bearing Force Generation

The radial bearing forces are generated in two skewed air-

gap windings with a pole-pair number of two. The interested

reader is referred to [20] for a detailed description of the used

winding type. Due to the heteropolar field of the permanent

magnet, the winding currents have to be controlled by a field-

oriented control algorithm [3]. According to [4], the radial

bearing force vector

F =
3

2
χpm

⎡
⎣idiq

0

⎤
⎦ , (1)

can be calculated as a function of field-oriented currents id
and iq . The calculation of the bearing constant χpm is given

in [4].

B. Rotor Position Control

The rotor is levitated by controlling the rotor position

by means of feedback control. A printed-circuit-board-based

position sensor system is implemented for measuring the rotor

position in the feedback path of the control scheme. The radial

rotor position measurement is based on eddy-current sensors

presented in [21], whereas the axial and the angular positions

are obtained by Hall-effect-based stray field measurements [4].

A cascaded control scheme shown in Fig. 3, as proposed

in [4], is used for the control of the rotor position. Radial

and axial rotor deflections are measured and controlled in an

outer control loop. This controller is implemented in stator-

fixed coordinates. The output of the rotor position controller

is a set of reference winding currents, which are then tracked

in a field-oriented inner control loop. Thus, a measurement

of the angular rotor position γ, given by the trigonometric

terms cos(γ) and sin(γ), has to be obtained from the angular

position sensor.

The implemented bearing power electronics and the control

performance of the current control loop are presented in [4].

C. Challenges and Limitations

The biggest challenge for the control of the bearing is the

fact that the radial bearing currents have to be controlled by a

field-oriented control algorithm up to a rotational frequency of
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Fig. 4: Schematic of the rigid rotor geometry and coordinate defini-
tions.

8.33 kHz. A phase error in the angular transformations results

directly in an angular error of the applied radial bearing forces.

Another challenge for the bearing control are the gyro-

scopic couplings which increase with the rotational speed

[8]. Furthermore, the nutation mode frequency increases with

the rotational speed [8]. Therefore, high-bandwidth bearing

actuators and control are necessary to stabilize the system.

In the proposed design, a bending of the rotor cannot be

actively damped. Therefore, the machine has to be operated

below the bending mode frequency. Hence, the maximum

rotational speed is limited by the mechanical design and

dynamics of the rotor.

III. ROTOR DYNAMICS MODELING

This section briefly describes the dynamics of the mechan-

ical system within the AMB control loop. In Sec. III-A,

the dynamics of a rigid rotor are given. These dynamics are

the basis for the design of the rotor position estimator and

controller presented in Sec. IV. An extended rotor dynamics

model accounting for the flexible structure of the rotor is

presented in Sec. III-B. Both rotor dynamic models will be

compared to each other in Sec. V.

A. Dynamics of the Rigid Rotor

A schematic of the rotor geometry is shown in Fig. 4. A

stator-fixed coordinate system I with principal axes (xI, yI, zI)
and a rotor-fixed coordinate system CG is introduced. The

origin of CG is defined as the center of mass of the rotor.

The principal axes of CG (x0, y0, z0) coincide with the

rotors’ principal axes of inertia. The rotor position can be

described by the position of CG with respect to I, defined by

the transversal displacement (xCG, yCG, zCG) and the Cardan

angles (α, β, γ).
The definition of radial state dynamics is based on the

assumption (i) that the rotor is symmetric and rigid, and (ii)

that the deviations of the principal axes of I and CG are small

compared to the rotor dimensions. Due to assumption (ii),

linearization is applicable, which yields that α and β can be

characterized as inclinations about the xI- and yI-axis [8].
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The equations of motion for the radial state vector

z =
[
β xCG −α yCG

]T
, (2)

can be derived from Lagranges’s equations [8]. For a constant

rotational frequency Ω = ∂γ
∂t and given the assumptions (i) and

(ii), the equations of motion can be written in the linearized

form [8]

M z̈ + Gż + Sz = V u + g + WfL, (3)

where the dot denotes the derivative with respect to time,

ż = ∂z
∂t . The diagonal mass matrix

M = diag (Iy0 ,m, Ix0 ,m) , (4)

and the gyroscopic coupling matrix

G = Iz0Ω

⎡
⎢⎢⎣

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , (5)

are defined according to [8]. m denotes the rotor mass and

Ix0 , Iy0 and Iz0 the inertia of the rotor about the x0-, y0-

and z0-axis. Given the symmetry of the rotor, Ix0
= Iy0

can

be assumed. The magnetic stiffness, resulting from the high-

permeability stator core, is generally a non-linear function of

the rotor deflections. It was shown in [3] that for the presented

type of machines this force can be approximated by a linear

rotor deflection dependent destabilizing force. Therefore, the

linear negative stiffness of the configuration is defined by the

matrix

S = diag (kα, kx, kα, kx) . (6)

The generalized forces on the right hand side of (3) consist

of all external forces acting on the rotor. Such as the force

caused by the magnetic bearing current vector

u =
[
id,B1 iq,B1 id,B2 iq,B2

]T
, (7)

the force of gravity caused by the rotor mass

g =
[
Ty,FF Fx,FF −Tx,FF Fy,FF

]T
, (8)

and a force component resulting from an unknown load force

fL =
[
Fx,e Fy,e Fx,f Fy,f

]T
. (9)

The components of fL act on the two load planes defined in

Fig. 4. The transformation of fL and u into center of mass

coordinates is done with the matrices

W =

⎡
⎢⎢⎣

−le 0 lf 0
1 0 1 0
0 −le 0 lf
0 1 0 1

⎤
⎥⎥⎦ , (10)
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Fig. 5: Proposed multivariable feedback control scheme for the radial
rotor position. A LQG controller with integral action and quadratic
control input limiting is implemented.

V =
3

2
χpm

⎡
⎢⎢⎣

−la 0 lb 0
1 0 1 0
0 −la 0 lb
0 1 0 1

⎤
⎥⎥⎦ . (11)

Radial displacements of the rotor can be measured at the

sensor planes with the embedded eddy-current sensor, yielding

the vector yS or by means of external position sensor at the

load planes yielding the vector yL.

B. Dynamics of the Flexible Rotor

The rotor dynamics presented in the previous subsection

assume a rigid rotor structure. Thus, possible bending of

the rotor is neglected. In order to understand the dynamics

including bending effects, a model of the flexible rotor, based

on the well-known Euler Bernoulli beam theory [22], is intro-

duced. The model is implemented in state-space representation

according to the procedure described [8].

IV. RADIAL ROTOR POSITION CONTROLLER DESIGN

In contrast to most other magnetic bearing concepts, the

linear and frequency independent bearing force-to-current

relationship of the proposed design improves the achievable

accuracy of system dynamics modeling. Furthermore, the

slotless design of the windings allows to control bearing forces

up to high bandwidths [4].

The dynamics (3) describe a non-linear, multivariable sys-

tem. The non-linearity is a result of the gyroscopic effect,

which is a function of the time-varying rotational frequency Ω.

However, provided that Ω varies only slowly when compared

to the radial dynamics, the system behavior is considered as

a switched linear system [23]. Thus, for a constant rotational

frequency Ω, optimal control algorithms such as H∞ or LQG

can be applied.

The implemented MIMO linear state feedback control

scheme is shown in Fig. 5. In order to allow for a compu-

tationally efficient and simple real-time implementation of the

control algorithm, a LQR and a Kalman filter based on (3), for

Ω = 0, is evaluated, i.e. (time-varying) gyroscopic couplings

are neglected by the control algorithm. This controller can be

implemented very efficiently, in a straight-forward way, using

a single set of controller and state estimator matrices over

the whole speed range. The closed-loop system performance,

including the model error caused by the neglected gyroscopic

couplings, is analyzed in Sec. V.
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A. State Estimation

Since states like radial rotor velocities cannot be measured

directly with the employed position sensors, and to allow for

position noise rejection, a Kalman filter based on the dynamics

(3) is implemented.

The design of the Kalman filter is based on the assumption

that the measured rotor position yS is disturbed by an additive

zero-mean white Gaussian noise signal yN with known covari-

ance matrix. The process noise is defined by the unknown load

force vector fL, which is also assumed to be zero-mean white

Gaussian noise with known covariance matrix.

B. Linear State Feedback Controller

A LQR is implemented. In order to allow for offset-free

controller performance, the state vector is augmented with an

integral of the control error zREF − ẑ with respect to time,

denoted with eINT. Typically, the reference rotor position is

set to the geometric center of the motor, zREF = 0.

The calculation of controller matrix K is based on a

weighted integral quadratic cost function. The weighting fac-

tors for the cost function are chosen such that the required

closed-loop system performance is met. The task of controller

tuning is therefore reduced to choosing the weights of a single

cost function. This results in a significant simplification in

practice when compared to PID-based control, where typically

different controllers are used for different states of the MIMO

system.

C. Quadratic Controller Output Limiting & Anti-Windup

Overheating of the bearing windings can be avoided by

limiting the total power loss in the windings. The power

loss consists of proximity losses, which are mainly caused

by the permanent magnet flux density, and winding current

conduction losses, which are proportional to i2d+i2q [24]. In the

presented prototype, the conduction losses are the dominant

loss component. Therefore, only the conduction losses are

limited by the controller. Thus, a quadratic limiting function

is proposed. The limiting is performed for each of the two

bearing windings individually. Both id and iq are scaled with

the same factor, preserving the angular direction of the bearing

force, but limiting the amplitude of the phase currents to imax.

When any of the two bearing windings are in saturation, the

integration of the control error zREF − ẑ is disabled by the

control signal sSAT to prevent integrator windup.

V. RESULTS

The presented control scheme is implemented on an Altera

NIOS II signal processor with a controller execution frequency

of 33.3 kHz. The achieved controller performance is analyzed

in Sec. V-A. Finally, measurement results are shown in

Sec. V-B for a world record speed of 500 krpm.

A. Closed-Loop System Performance

A Campbell diagram of the closed-loop system is shown

in Fig. 6. The eigenfrequencies of the closed-loop system

are plotted for varying rotational frequency. It can be seen

that the motor was designed such that the bending mode

frequencies are higher than the maximum rotational frequency

of 500 krpm (Ω = 2π ·8.33 kHz). Therefore, it can be assured

that the bending resonances are not excited by the unbalance

of the rotor [8].

The performance of the controller is analyzed in the fre-

quency domain by the gain of the closed-loop system, shown

in Fig. 5. The input of the system is defined as force vector

fL, and the output as rotor deflection vector yL. Single

input-to-output transfer functions are a poor performance

measurement of a MIMO system, as the gain might vary

drastically depending on the direction of the input vector

[25]. Therefore, the singular value decomposition is used to

analyze the performance of the system. The singular-value

input directions of fL are defined as forward and backward
rotating parallel and conical disturbances. Similarly, the output

directions of yL are forward and backward rotating parallel
and conical whirls. Given the symmetry of the motor, it can be

seen that the direction of the input is the same as the direction

of the output. Therefore, the performance can be analyzed by

a set of four singular-value transfer functions.

In Fig. 7 and Fig. 8, singular-value transfer functions are

shown using rigid and flexible rotor model system dynamics.

Both models are calculated for the maximum rotational fre-

quency of 500 krpm. In both plots, exactly the same feedback

controller is used to stabilize the system. It can be seen that

both models yield the same results for all rigid-body modes,

which have an eigenfrequency below 1 kHz. In the proposed

motor design, all bending modes of the rotor are stable.

Therefore, only the rigid-body modes have to be actively

controlled by the magnetic bearing. Thus, it can be concluded

that it is reasonable to use rigid-body rotor dynamics for the

design of the rotor position controller.

In Fig. 8, it can be seen that the transfer functions for

conical disturbances feature peak values at the rigid-body

nutation (575 Hz) and the precession (81 Hz) frequencies.

These peaks are undesirable, but they are unavoidable for

real systems [25]. The peak values could be further reduced

by including the (time-varying) gyroscopic couplings in the

controller design. Nevertheless, it can be concluded from the

simulations that the controller yields sufficient performance to

stabilize the mechanical system, and it is robust enough to

operate the motor over the whole speed range with a single

set of controller parameters.

B. Closed-Loop System Measurement at 500 krpm

Fig. 9 shows a measurement of the motor in operation at a

rotational speed of 500 krpm. An Ω-synchronous radial rotor

deflection of about ±17 μm can be observed. At this rotational

speed, Ω is about 14 times higher than the eigenfrequency of

the rigid-body modes (Fig. 6). Therefore, it can be excluded

that the Ω-synchronous deflection is caused by the magnetic

bearing. Measurements show that the Ω-synchronous deflec-

tions increase with increasing rotational speed. Thus, it can be

concluded that the deflections are caused by a deformation of

the rotor. This deformation might be caused by unbalance.
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VI. CONCLUSION

The machine prototype presented in this paper over-

comes several limitations of previously presented high-speed

magnetically-levitated electrical drive systems. Both, motor

and bearing windings are implemented as air-gap windings.

Thus, linear and frequency independent bearing force-to-

current relationships result, improving the accuracy of the

system dynamics modeling considerably. Furthermore, the

slotless design of the bearing windings allows to achieve

very high actuator bandwidths. A multivariable state feedback

control algorithm based on LQG control is proposed. The
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conical whirls (yL) for a rotational speed of 500 krpm. Values are
given for two systems using the same feedback controller but different
rotor dynamics modeling.
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Fig. 9: Closed-loop system measurement of the motor in operation at
a rotational speed of 500 krpm. The upper plot shows the Hall-effect-
based angular position measurement to verify the actual rotational
speed. A measurement of the radial rotor deflections obtained by an
external optical displacement sensor (Keyence LK-H022) is shown
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are shown in the lower plot.

control scheme is implemented on a signal processor and

proved to perform well in practice, stabilizing the system

over the design speed range of the high-speed motor with

a single set of controller parameters. Closed-loop system

measurements of the motor, rotating at 500 000 rpm, verify the

functionality of the overall system and prove the feasibility of

the proposed control design. To the authors’ knowledge, this is

the highest speed achieved by magnetically-levitated electrical

drive systems so far.
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