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In this article, a small sphere spinning in a rotating magnetic field is analyzed in terms of the

resulting magnetic flux density distribution and the current density distribution inside the ball.

From these densities, the motor torque and the eddy current losses can be calculated. An

analytical model is derived, and its results are compared to a 3D finite element analysis. The

model gives insight into the torque and loss characteristics of a solid rotor induction machine

setup, which aims at rotating the sphere beyond 25 Mrpm. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4765676]

I. INTRODUCTION

The current world record for the rotational speed of a

small spinning ball was achieved by Beams as early as the

year 1946. He succeeded in rotating a steel sphere of 0.8 mm

in diameter with a speed of 23.16 Mrpm.1 Since then, no suc-

cessful attempt has been reported that would even come close

to that record (not considering setups in the microscopic scale,

e.g., Ref. 2). A new project at ETH Zurich aims at achieving

high rotational speeds in the tens of millions rpm range with

the ultimate goal of outperforming the long standing record

by Beams. For the setup, a small steel ball, which is placed in

a vacuum tube, is levitated through magnetic forces and accel-

erated with a radial coil system. Different possible bearing

and drive setups have already been presented recently.3,4 The

first tests revealed that air coils should be employed for the

drive in order to avoid heavy iron losses. As a consequence,

the external magnetic flux density generated with the coil sys-

tem is largely reduced to around 10 mT.

In this article, the electromagnetic characteristics of

such a so-called solid rotor induction machine5–7 are ana-

lyzed in great detail. In Sec. II, the field problem is stated,

derived from basic equations and boundary conditions.

This allows calculating the vector potential, from which

both the magnetic flux density and the current density due

to eddy currents can easily be determined. From these field

quantities, the integral values for the motor torque and the

eddy current losses can be found. A comparison with a 3D

finite element analysis is undertaken in Sec. III in order to

confirm the theoretical results. Additionally, a graphical

comparison between plots resulting from both the simula-

tion and from the formulas proves the validity of the theo-

retical model.

II. ANALYTICAL ANALYSIS OF ELECTROMAGNETIC
FIELD PROBLEM

For the following calculations, three different coordinate

systems are introduced. A Cartesian coordinate system fixed

in space builds the reference frame, with its origin in the

middle of the spinning ball and its unity vector given by

ð~ex ~ey ~ez ÞT. Additionally, the z-axis corresponds with

the axis of rotation. A second Cartesian coordinate system is

fixed with the spinning ball and rotates with its current speed

in relation to the reference frame. The unity vector is

expressed with ð~e1 ~e2 ~ez ÞT, where~ez is identical for both

coordinate systems (see Fig. 1). Finally, a spherical coordi-

nate system ð~er ~eh ~eu ÞT is introduced as well, which is

derived from the rotating Cartesian coordinate system.

The electromagnetic field problem can be simplified

with a trick, as in the end only the frequency difference

between the rotating magnetic field and the spinning ball is

of interest (the so-called slip frequency according to the

working principle of induction machines). For that purpose,

a fixed magnetic flux density ~B0 into the positive x-direction

is set, given by

~B0 ¼ B0~ex: (1)

The rotational speed of the spinning ball is then set to the

aforementioned frequency difference (slip frequency),

denoted with x. In order to carry out the calculations in the

rotating reference frame, the magnetic flux density is trans-

formed, using the vector

~b ¼
1

j

0

0
B@

1
CA � ~ex

~ey

~ez

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
~c

e�jxt ¼
1

j

0

0
B@

1
CA � ~e1

~e2

~ez

0
B@

1
CA

¼
sin hðcos uþ j sin uÞ
cos hðcos uþ j sin uÞ

j cos u� sin u

0
B@

1
CA � ~er

~eh

~eu

0
B@

1
CA: (2)

Therefore, the magnetic flux density can be reformulated as

~B0 ¼ RefB0
~b ejxtg: (3)
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A. Basic equations

The electromagnetic field problem can be solved by cal-

culating the vector potential ~A; from which the remaining

properties of interest can easily be derived.8–10 The solution

for ~A is found by considering basic equations and certain

boundary conditions. The vector potential is linked with the

magnetic flux density ~B through

~r � ~A ¼ ~B; (4)

where ~r is the Nabla operator. Additionally, the Coulomb

gauge11 is chosen for this problem, which results in

~r � ~A ¼ 0: (5)

From the well-known relation between the electric field ~E
and the magnetic flux density

~r � ~E ¼ � @
~B

@t
; (6)

the relation between the electric field and the vector potential

can be derived as

~E ¼ � @
~A

@t
: (7)

It has to be noted that there is no gradient of a scalar poten-

tial in Eq. (7) because there is no initial static charge on the

sphere. Two additional well-known field equations are

required. The first one links the magnetic flux density with

the current density ~J and is written as

~r � ~B ¼ l0 lr
~J ; (8)

where l0 is the vacuum permeability and lr is the relative

permeability. The second field equation, which relates the

current density with the electric field, consists of two

parts, namely, the conductor based current and the dis-

placement current. For the problem at hand, the latter can

be neglected as the conductor based current is clearly

dominant, resulting in

~J ¼ r ~E; (9)

with r being the electrical conductivity. Combining Eqs. (4)

and (7)–(9), the following fundamental equation for the vec-

tor potential can be found:

~r � ð~r � ~AÞ ¼ �l0 lr r
@~A

@t
: (10)

This equation can be rewritten by employing the identity
~r � ð~r � ~AÞ ¼ ~rð~r � ~AÞ � D~A (with D being the Laplace

operator) and the condition in Eq. (5), resulting in

�D~A þ l0 lr r
@~A

@t
¼ 0: (11)

B. Boundary conditions

The calculation of the vector potential has to be divided

into two areas: the region inside the sphere (with radius a)

and the region around it. For the latter, Eq. (11) can be sim-

plified to

D~A ¼ 0; (12)

as the conductivity r is zero outside the ball.

In order to find the correct solution for the vector poten-

tial, three boundary conditions have to be considered. First

of all, the radial component of the magnetic flux density Brad

has to be steady at the surface of the sphere. The flux density

component just outside the sphere is denoted as Bout
rad, whereas

at the inner side of the surface the notation Bin
rad is used.

Then, the requirement for steadiness can be written as

Bout
rad � Bin

rad ¼ 0: (13)

A similar boundary condition can be written for the tangen-

tial component of the magnetic field, leading to

Hout
tan � Hin

tan ¼ 0: (14)

The third boundary condition has to be considered for the

vector potential ~A0 far away from the sphere, where a homo-

geneous magnetic flux density is found that is not influenced

by the ball. In that case, the vector potential is subject to an

asymptotic condition, which is given by

~A ! ~A0 ¼
1

2
~B0 �~r: (15)

The position vector ~r in Eq. (15) identifies the position in

space and can be expressed in spherical coordinates as

FIG. 1. Fixed Cartesian ð~ex ~ey ~ez ÞT, rotating Cartesian ð~e1 ~e2 ~ez ÞT,

and rotating spherical ð~er ~eh ~eu ÞT coordinate systems. The ball spins in

counterclockwise direction and is subject to a constant external magnetic

flux density with amplitude B0.
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~r ¼
r
0

0

0
@

1
A � ~er

~eh

~eu

0
@

1
A: (16)

C. Vector potential

For the vector potential of the entire space, an ansatz

according to

~A ¼ 1

2
B0RefFðrÞ~b �~r ejxtg (17)

is used, for which the function FðrÞ has to be determined in

such a way that the field condition in Eq. (11) and all the

boundary conditions are satisfied. Using spherical coordi-

nates, the vector potential can be written as

~A¼ 1

2
B0 rRe FðrÞ

0

½jcosu� sinu�
�cosh½cosuþ jsinu�

0
@

1
A � ~er

~eh

~eu

0
@

1
Aejxt

8<
:

9=
;:

(18)

By replacing the vector potential in the field condition

of Eq. (11) with the ansatz from Eq. (18), the following dif-

ferential equation can be found for the space inside the

sphere:

@2FðrÞ
@r2

þ 4

r

@FðrÞ
@r
� j l r x FðrÞ ¼ 0; (19)

for which the solution is given by

FðrÞ ¼ c1

sinðcEC rÞ
ðcEC rÞ3

� cosðcEC rÞ
ðcEC rÞ2

 !
¼ c1 f ðcEC rÞ: (20)

The integration constant c1 will be determined through the

boundary conditions. The so-called eddy current constant

cEC is defined as

cEC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�j l0 lr rx

p
: (21)

In the vacuum around the spinning ball, the field condition

from Eq. (12) is used, resulting in a simpler differential

equation

@2FðrÞ
@r2

þ 4

r

@FðrÞ
@r
¼ 0: (22)

The solution of Eq. (22) can be calculated to

FðrÞ ¼ c2 þ c3

1

r3
; (23)

with two additional integration constants.

From the first boundary condition in Eq. (13), the fol-

lowing relation can be derived:

Foutðr ! aÞ � Finðr ! aÞ ¼ 0: (24)

This relation can be achieved by expanding the func-

tions from Eqs. (20) and (23) to

FðrÞ ¼ c01
f ðcEC rÞ
f ðcEC aÞ (25)

and

FðrÞ ¼ c2 þ c03
a

r

� �3

; (26)

respectively. Additionally, the relation

c01 ¼ c2 þ c03 (27)

has to hold true. From the asymptotic condition in Eq. (15),

it follows that

FðrÞ ! 1 (28)

for r � a: This allows to determine the integration constant

c2 to the value 1. Finally, the boundary condition from

Eq. (14) has to be considered. It leads to another differential

equation, which is given by

1

l0

r
@Foutðr ! aÞ

@r
þ 2Foutðr ! aÞ

� �

� 1

l0 lr

r
@Finðr ! aÞ

@r
þ 2Finðr ! aÞ

� �
¼ 0: (29)

From this equation, the integration constant c03 can be

derived as

c03 ¼ DðcEC aÞ ¼ ð2lr þ 1ÞgðcEC aÞ � 1

ðlr � 1ÞgðcEC aÞ þ 1
; (30)

with an additional function defined as

gðcEC aÞ ¼ f ðcEC aÞ cEC a

sinðcEC aÞ ¼
1� ðcEC aÞ cotðcEC aÞ

ðcEC aÞ2
:

(31)

Finally, the complete solution for FðrÞ becomes

FðrÞ ¼ ½1þ DðcEC aÞ� f ðcEC rÞ
f ðcEC aÞ (32)

for the region inside the sphere with r � a and

FðrÞ ¼ 1þ DðcEC aÞ a

r

� �3

(33)

for the region outside the sphere (vacuum) with r > a:

D. Magnetic flux density

Once the vector potential is determined, the magnetic

flux density can be calculated by employing Eq. (4), result-

ing in
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~B ¼B0Re FðrÞ
sin h½cos uþ j sin u�
cos h½cos uþ j sin u�
½j cos u� sin u�

0
B@

1
CA

2
64

8><
>:

þ r

2

@FðrÞ
@r

0

cos h � ½cos uþ j sin u�
½ j cos u� sin u�

0
B@

1
CA
3
75 � ~er

~eh

~eu

0
B@

1
CA ejxt

9>=
>;:

(34)

It can be seen that the magnetic flux density depends on the

external homogenous flux density B0. Due to the influence of

the spinning ball, an amplification of the magnetic flux density

can be observed, which is expressed with the characteristic

function F(r) as well as its derivative. These two functions are

plotted in Figs. 2 and 3, respectively, for two different rota-

tional frequency values. The figures reveal that the flux den-

sity is amplified in dependence on the radial distance from the

ball center. For increasing frequency, the amplification

becomes more dominant in the region of the ball surface.

Moreover, the derivative part from Fig. 3 clearly outweighs

the function in Fig. 2 for the higher frequency.

In the middle of the sphere, cut by the x-y-0-plane, the

flux density distribution can be simplified to

~B ¼ B0Re FðrÞ
½cos uþ j sin u�

0

½j cos u� sin u�

0
B@

1
CA

2
64

8><
>:

þ r

2

@FðrÞ
@r

0

0

½j cos u� sinu�

0
B@

1
CA
3
75 � ~er

~eh

~eu

0
B@

1
CA ejxt

9>=
>;: (35)

Hence, the direction of the flux density is aligned with the

plane, as will be further shown in Sec. III.

E. Current density

The current density inside the sphere can be derived

from the vector potential as well. Combining Eqs. (7) and (9)

leads to

~J ¼ �r
@~A

@t
¼ � 1

2
B0 r x r Re FðrÞ �

0

½�cos u� j sin u�
�cos h½j cos u� sin u�

0
B@

1
CA � ~er

~eh

~eu

0
B@

1
CA ejxt

8><
>:

9>=
>;: (36)

Outside the sphere, the current density is zero as there is zero

conductivity in vacuum.

As before, the distribution in the middle of the sphere,

cut by the x-y-0-plane, is considered exemplarily. For the

current density, only one direction remains:

~J ¼ � 1

2
B0 r x r RefFðrÞ ½�cos u� j sin u�~eh ejxtg: (37)

The current density direction is perpendicular to the

x-y-0-plane, pointing into the positive or negative z-direction.

FIG. 2. Real and imaginary part of the amplifying function F(r). For

increased frequency, the amplification becomes more pronounced towards

the ball surface. The physical parameters are set according to Table I.

FIG. 3. Real and imaginary part of the derivative of the amplifying function

F(r), multiplied with r/2. For increased frequency, the amplification becomes

more pronounced towards the ball surface, and, additionally, the influence of

the derivative clearly outweighs the influence of F(r) from Fig. 2. The physi-

cal parameters are set according to Table I.
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In fact, the current distribution consists of loops inside the

ball, as will be further demonstrated in Sec. III.

F. Torque

The torque per volume can be found as the cross product

of the radius and the force per volume inside the sphere,

denoted as

d~T ¼~r � d~F: (38)

The force per volume itself is the cross product of the current

density and the magnetic flux density, wherefore the torque

per volume becomes

d~T ¼~r � ð~J � ~BÞ: (39)

Finally, the total motor torque can be found by integrating

the torque per volume over the whole spinning ball. For

the spherical coordinate system used, this integration is

given by

~T ¼
ð2p

0

ðp
0

ðr
0

~r � ð~J � ~BÞr2sin h dr dh du: (40)

As a more elegant alternative to evaluating the integral

in Eq. (40), the torque can be calculated by considering the

spinning ball as a magnetic dipole ~m, which is related to the

vector potential through

~A ¼ l0

4p
~m �~r

r3
: (41)

For the considered sphere radius a, the magnetic dipole can

then be written as

~m ¼ 2p
l0

a3 B0Re FðaÞ
1

j
0

0
@

1
A � ~ex

~ey

~ez

0
@

1
A

8<
:

9=
;: (42)

The motor torque can be found as the cross product of the

magnetic dipole and the external homogenous magnetic flux

density ð~T ¼ ~m � ~B0Þ, resulting in

~T ¼ �B0 my~ez: (43)

This second calculation method is advantageous as the exter-

nal magnetic flux density B0 is independent of the variable r
and constant. Through evaluation of Eqs. (42) and (43), the

torque can be reformulated to

~T ¼ 3p a3

1þ
ffiffiffi
2
p B2

0

l0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Tbd

2þ
ffiffiffi
2
p

ffiffiffi
2
p
þ qþ 1

q

~ez; (44)

where the variable q stands for

q ¼ 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lr

l0 r x

r
: (45)

Additionally, the breakdown torque Tbd has been

marked in Eq. (44). It occurs at the angular frequency for

which q in Eq. (45) becomes unity, which is the case if

xbd ¼
1

a2

lr

l0 r
¼ 2p fbd: (46)

The breakdown torque only depends on the amplitude of the

homogenous magnetic flux density and the sphere radius. In

particular, its value is independent of the angular frequency,

the relative permeability, and the conductivity of the spin-

ning ball.

For small angular frequencies, the motor torque can be

approximated with

x� xbd : T 	 cT B2
0 a4

ffiffiffiffi
x
pffiffiffiffiffi

lr
p ; (47)

employing a torque constant cT ; whereas for large angular

frequencies the motor torque is approximated with

x� xbd : T 	 cT B2
0 a2

ffiffiffiffiffi
lr
p ffiffiffiffi

x
p : (48)

Hence, over the whole frequency range, the torque depends

in a quadratic relation on the amplitude of the magnetic flux

density. Moreover, in the targeted range below the break-

down torque, the ball radius influences the torque with a fac-

tor to the power of 4.

The motor torque characteristics for such a solid rotor

induction machine are presented in Fig. 4. The torque has

been normalized with the breakdown torque, whereas the

angular frequency has been normalized with the break-

down frequency. Due to this normalization of both axes,

the shape of the torque curve in Fig. 4 becomes com-

pletely independent of all the aforementioned physical pa-

rameters. According to Eqs. (47) and (48), the torque

curve increases approximately proportionally to
ffiffiffiffi
x
p

for

small frequencies and decreases approximately proportion-

ally with 1=
ffiffiffiffi
x
p

for larger frequencies beyond the break-

down torque.

FIG. 4. Motor torque (normalized with the breakdown torque) in relation to

the angular frequency (normalized with the breakdown frequency).
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G. Eddy current losses

The ohmic loss density due to the eddy currents can be

expressed as

pEC ¼
1

r
~J

2
: (49)

As before for the torque, the overall losses result from an

integration of the loss density over the entire volume of the

spinning ball, written in spherical coordinates as

PEC ¼
ð2p

0

ðp
0

ðr
0

1

r
~J

2
r2sin h dr dh du: (50)

Given that the hysteresis losses in the spinning ball have

been neglected (which is justified for the high rotational

speeds, as the eddy current losses are clearly dominant com-

pared to the hysteresis losses12), the eddy current losses are

equal to the motor power and can easily be calculated with

PEC ¼ PM ¼ Tx: (51)

In reality, additional losses such as air friction losses,13 iron

and copper losses in the stator,14,15 and losses in the power

electronic converter16 have to be considered, too, which

lower the efficiency of the motor.

Fig. 5 shows the characteristics of the eddy current

losses. These losses have been normalized with the motor

power at breakdown torque (as the product of the breakdown

torque and the angular breakdown frequency). The frequency

itself has also been normalized with the breakdown fre-

quency. Despite the breakdown in torque, the losses steadily

increase with the angular frequency.

III. COMPARISON WITH 3D FINITE ELEMENT
ANALYSIS

In order to validate the theoretical model, a comparison

with 3D finite element simulations is drawn. For this com-

parison, a realistic scenario is chosen, with the employed pa-

rameters given in Table I.

FIG. 5. Eddy current losses (normalized with the motor power at breakdown

torque) in relation to the frequency (normalized with the breakdown

frequency).

TABLE I. Parameter of motor setup used for comparison.

Name Symbol Value

Rotor radius rR 0.5 mm

Magnetic flux density B0 10 mT

Conductivity of steel ball r 106 S/m

Relative permeability of steel ball lr 100

Conductivity of environment r 0 S/m

Relative permeability of environment lr 1

Relative permittivity er 1

FIG. 6. Graphical plot of the amplitude

of the magnetic flux density inside the

sphere cut through the x-y-plane at z¼ 0

at the moment when the two Cartesian

coordinate systems are aligned. Three

different rotational frequencies of (a) 10,

(b) 100, and (c) 1000 kHz are shown.

The upper plots result from the theoreti-

cal calculations, whereas the lower plots

are derived from the 3D finite element

simulations. Additionally, the direction

of the flux density has been marked in

the upper plots.
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A. Magnetic flux density

From the theoretical analysis, the magnetic flux density

has been derived in Eq. (34). In the upper row of Fig. 6, the

amplitude of this flux density is plotted inside the sphere for

three different rotational frequencies with the ball spinning

in counterclockwise direction. The spheres have been cut

through the middle in the x-y-plane for z¼ 0, corresponding

to the scheme in the lower plot of Fig. 1. Moreover, the two

Cartesian coordinate systems are aligned. In the lower row

of Fig. 6, the corresponding plots resulting from 3D finite

element simulations have been added. A convincing similar-

ity in color and shape of the flux density pattern can be found

for all three frequencies. Moreover, the direction of the flux

density has been marked in the upper plot, resulting directly

from the simplified equation found in Eq. (35).

Fig. 6 also reveals that the increase in magnetic flux den-

sity is more pronounced towards the surface of the sphere for

increasing rotational frequencies. Therefore, the maximum

increase in the amplitude of the magnetic flux density

(related to the homogeneous flux density with amplitude B0)

has been investigated and is plotted in Fig. 7 (solid line).

In the targeted region up to 108 Hz (see further down),

an increase with factor 100 can be observed, which, for the

chosen values, would correspond to 1 T. Both the analytical

model and the simulations are based on a constant relative

permeability, which differs from the hysteresis characteris-

tic of a real material. Nevertheless, as the material does not

saturate (except for a possible small area close to the sur-

face), such an approximation with a constant value can be

justified.

Fig. 7 further reveals the influence of doubling a certain

physical parameter. Interestingly, doubling either the ball ra-

dius or the conductivity only slightly increases the maximum

magnetic flux density found within the sphere. However, an

increase in the relative permeability could quickly result in a

maximum flux density beyond the saturation level of the ma-

terial, in which case the simplification with linear material

cannot be upheld anymore. Hence, the model validity has to

be checked for each setup in dependence on the actual physi-

cal parameters.

B. Current density

In a similar manner than before for the magnetic flux

density, the amplitude of the current density has been com-

pared between the result from the theoretical analysis Eq.

(36) and 3D finite element simulations. The upper row in

Fig. 8 shows the outcome resulting from the theoretical con-

siderations, and the comparison with the simulated results in

the lower row reveals a convincing similarity, too. A more

pronounced increase of the current density towards the sur-

face of the sphere can be observed as well.

FIG. 7. Maximum magnetic flux density at the border of the steel ball (nor-

malized with the homogenous magnetic flux density of the environment) in

dependence on the rotational frequency.

FIG. 8. Graphical plot of the amplitude

of the current density inside the sphere

cut through the x-y-plane at z¼ 0 at the

moment when the two Cartesian coordi-

nate systems are aligned. Three different

rotational frequencies of (a) 10, (b) 100

and (c) 1000 kHz are shown. The upper

plots result from the theoretical calcula-

tions, whereas the lower plots are

derived from the 3D finite element simu-

lations. Additionally, the pointing direc-

tion of the current density has been

marked in the upper plots.
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As mentioned in Sec. II, the current density points into

the z-direction for the x-y-0-plane considered. Therefore, the

actual direction is marked in the upper plots of Fig. 8. The

current describes loops, which overlap each other with

increasing rotational frequency.

For both the magnetic flux density and the current den-

sity, a rotational pattern can be found for the amplitude. In

Fig. 9, the angle of the maximum amplitude for both physi-

cal quantities is given in dependence on the rotational fre-

quency. It can be seen that there is an increase in the angle

for rotational speeds beyond 105 Hz. Additionally, Fig. 9

reveals that there is a permanent phase difference in the

range of 45
 between the amplitude maxima of magnetic

flux density and current density. The maxima of both the

magnetic flux density and the current density have been

marked with circles in the lower plots of Figs. 6 and 8.

C. Torque

The torque characteristic of the spinning ball with the pa-

rameters from Table I is presented in Fig. 10. The solid line

corresponds with the theoretical value calculated in Eq. (44),

revealing a breakdown frequency of 50 MHz. Additionally,

the torque calculated from the 3D finite element analysis is

represented with blue circles. For the frequency range of 105

to 108 Hz, a very good alignment can be found that clearly

confirms the theoretical results. The small difference for the

lower frequency range can be explained with the upper limit

of the mesh resolution (the upper left quarter of the ball mesh

has been added to Fig. 10) in case of the finite element analy-

sis. In the most accurate range (105–108 Hz), the torque is

mainly created in the sphere volume close to the surface, for

which the mesh is extremely detailed. Beyond 108 Hz, an even

more detailed mesh close to the surface would be required to

accurately predict the torque trough simulations.

IV. CONCLUSIONS

An analytical solution has been derived for a rotating

sphere in a homogenous magnetic field. It gives the founda-

tion to accurately determine the magnetic flux density and

the current density characteristics of a prototype setup

employed for a world record attempt. Additionally, integral

values such as torque and eddy current losses can easily be

derived. The validity of the theoretical analysis has been

confirmed by means of comparison with a 3D finite element

analysis. Through comparison of torque values as well as

graphical comparisons of the amplitude of the magnetic flux

density and the current density, the correctness of the theo-

retical solution has been proven.

The presented model builds the analytical basis for a

future design of the ultra-high speed spinning ball setup.

ACKNOWLEDGMENTS

We would like to thank Professor Dr. Adalbert Prechtl

from the University of Technology in Vienna for his helpful

support with the analytical field problem.

1J. W. Beams, J. L. Young, and J. W. Moore, “The production of high cen-

trifugal fields,” J. Appl. Phys. 17, 886 (1946).
2B. E. Kane, “Levitated spinning graphene flakes in an electric quadrupole

ion trap,” Phys. Rev. B 82, 115441 (2010).
3C. Wildmann, T. Nussbaumer, and J. W. Kolar, “Design considerations for

the drive system of an ultra-high speed spinning ball motor,” in Proceed-

ings of the 2010 International Symposium on Power Electronics Electrical

Drives Automation and Motion (SPEEDAM), Pisa, Italy, 14–16 June

2010, pp. 1478–1483.
4C. Wildmann, T. Nussbaumer, and J. W. Kolar, “10 Mrpm spinning ball

motor: Preparing the next generation of ultra-high speed drive systems,” in

Proceedings of the 2010 International Power Electronics Conference

(IPEC), Sapporo, Japan, 21–24 June 2010, pp. 278–283.
5Y. Hu, J. Chen, and X. Ding, “Analysis and computation on magnetic field

of solid rotor induction motor,” IEEE Trans. Appl. Supercond. 20, 1844

(2010).
6J. F. Gieras and J. Saari, “Performance calculation for a high-speed solid-

rotor induction motor,” IEEE Trans. Ind. Electron. 59, 2689 (2012).
7E. Dlala and A. Arkkio, “Measurement and analysis of hysteresis torque in a

high-speed induction machine,” IET Electric Power Appl. 1, 737 (2007).
8J.-Y. Choi and S.-M. Jang, “Analytical magnetic torque calculations and

experimental testing of radial flux permanent magnet-type eddy current

brakes,” J. Appl. Phys. 111, 07E712 (2012).
9S.-M. Jang, H.-K. Kim, J.-Y. Choi, and K.-J. Ko, “Analysis and compari-

son for rotor eddy current losses of permanent magnet synchronous gener-

ator according to dc and ac load conditions,” J. Appl. Phys. 105, 07F109

(2009).
10J. W. Jansen, E. A. Lomonova, and J. M. M. Rovers, “Effects of eddy

currents due to a vacuum chamber wall in the airgap of a moving-magnet

linear actuator,” J. Appl. Phys. 105, 07F111 (2009).
11D. M. Drury, “The unification of the Lorentz and Coulomb gauges of elec-

tromagnetic theory,” IEEE Trans. Educ. 43, 69 (2000).
12K. Yamazaki, A. Suzuki, M. Ohto, and T. Takakura, “Harmonic loss and

torque analysis of high-speed induction motors,” IEEE Trans. Ind. Appl.

48, 933 (2012).

FIG. 9. Angle of the maximum magnetic flux density and the maximum cur-

rent density in dependence on the rotational frequency.

FIG. 10. Motor torque in dependence on the rotational frequency resulting

from theoretical calculations (solid line) and from 3D FE simulations

(circles). Moreover, the mesh of the simulation in the upper left quarter of

the sphere is shown.

104901-8 Reichert, Nussbaumer, and Kolar J. Appl. Phys. 112, 104901 (2012)

http://dx.doi.org/10.1063/1.1707658
http://dx.doi.org/10.1103/PhysRevB.82.115441
http://dx.doi.org/10.1109/TASC.2010.2043725
http://dx.doi.org/10.1109/TIE.2011.2160516
http://dx.doi.org/10.1049/iet-epa:20060472
http://dx.doi.org/10.1063/1.3672408
http://dx.doi.org/10.1063/1.3072760
http://dx.doi.org/10.1063/1.3076421
http://dx.doi.org/10.1109/13.825743
http://dx.doi.org/10.1109/TIA.2012.2191252


13J. Luomi, C. Zwyssig, A. Losser, and J. W. Kolar, “Efficiency optimiza-

tion of a 100-W 500 000-r/min permanent-magnet machine including

air-friction losses,” IEEE Trans. Ind. Appl. 45, 1368 (2009).
14K. Komeza and M. Dems, “Finite-element and analytical calculations of

no-load core losses in energy-saving induction motors,” IEEE Trans. Ind.

Electron. 59, 2934 (2012).

15L. Dupr�e, P. Sergeant, and L. Vandenbossche, “Magnetic network model

including loss separation and Preisach principles for the evaluation of core

losses in devices,” J. Appl. Phys. 97, 10E515 (2005).
16L. Aarniovuori, L. I. E. Laurila, M. Niemel€a, and J. J. Pyrh€onen,

“Measurements and simulations of DTC voltage source converter and

induction motor losses,” IEEE Trans. Ind. Electron. 59, 2277 (2012).

104901-9 Reichert, Nussbaumer, and Kolar J. Appl. Phys. 112, 104901 (2012)

http://dx.doi.org/10.1109/TIA.2009.2023492
http://dx.doi.org/10.1109/TIE.2011.2168795
http://dx.doi.org/10.1109/TIE.2011.2168795
http://dx.doi.org/10.1063/1.1853732
http://dx.doi.org/10.1109/TIE.2011.2161061

