

Conceptualization of the MVDC Power System of Ultra-Deep Sea HyDrones

Johann W. Kolar, David Menzi, Jonas E. Huber

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

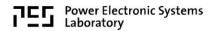
July 19, 2021

... Enabling the "Race to the Bottom"

Johann W. Kolar, David Menzi, Jonas E. Huber

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

July 19, 2021

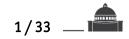

Outline

- ► Introduction
- Future E-HyDrone Concept DCX-Based DC Power Supply Multi-Objective Optimization System Dynamics

- **Conclusions / Outlook**

P. Czyz T. Guillod Acknowledgement

-

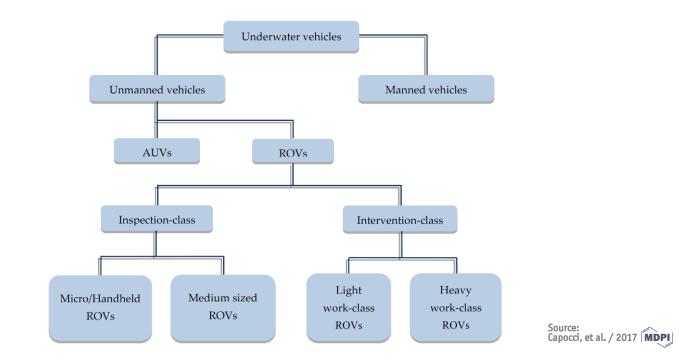

ROV / HyDrone

Concept Classification Applications

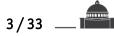
Classification of Underwater Vehicles

- **ROV** Remotely Operated Underwater Vehicle | Connected to Surface Vessel via Umbilical AUV Autonomous Underwater Vehicle

- Oceans Cover 71% of Earth's Surface | 5% Explored Global Annual ROV Market \$3.5 Billion in 2020 / 11.5% CAGR in 2021...2026 RESEARCHANDMARKETS
- 74% Increase in AUV Demand in 2022



Classification of Underwater Vehicles


- **ROV** Remotely Operated Underwater Vehicle | Connected to Surface Vessel via Umbilical
- AUV Autonomous Underwater Vehicle

- Oceans Cover 71% of Earth's Surface 5% Explored Global Annual ROV Market \$3.5 Billion in 2020 / 11.5% CAGR in 2021...2026 RESEARCHANDMARKETS 74% Increase in AUV Demand in 2022

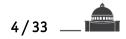
Non-Compressible

Source:

Work-Class ROV

- Thrusters / Manipulators / Instruments Lights / Video Camera

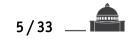
	SPECIFICATIONS		
→	Depth rating	3000 msw (option to 6000 msw)	
	Length	2200 mm	
\rightarrow	Height	1500 mm	
-	Width	1325 mm	
	Launch weight	2100 kg	
	Forward speed	> 3 knots	
	Thrust forward	325 kgf	
	Thrust lateral	290 kgf	
	Thrust vertical	225 kgf	
	Payload	225 kg	
	Through frame lift	1 Te	SYSTEM POWER REQU
	Tooling circuit	24 kW	Input
	Manipulator circuit	5 kW	
	Instrumentation power - 24 VDC	2 kW	ROV + Tooling
	Instrumentation power - 110 VAC, 50 Hz	2 kW	TMS
	Depth accuracy & resolution	0.01% / 1 x 10 ^{.8}	TMS propulsion (option)
	Heading accuracy & resolution	±1°/0.351°	LARS (typical)


TMS — Tether Management System
 LARS — Launch and Recovery System

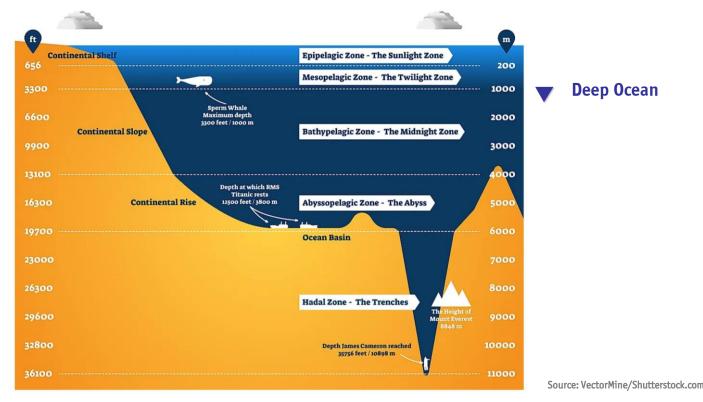
28 kVA


150 kVA

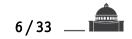
Subsea IMR — Inspection / Maintenance / Repair


- **Complex / Inaccessible Subsea Infrastructures** \rightarrow **Inspections & Interventions Oil & Gas Industry** \rightarrow Well & Infrastructure Diagnostics | Remediaton of Damaged Wells etc.

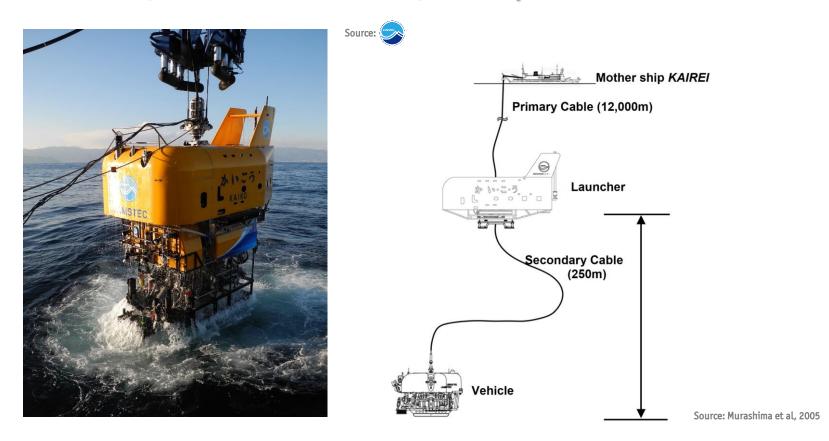
Operation Depths > 2500m



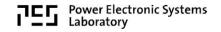
ICDCM 2021

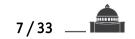

Scientific Exploration of Ocean Depths – 1/2

- Surveys of Submarine Volcanoes / Hydrothermal Vents / Subduction Zones
- Collection of Seabed Sediments / Microorganisms



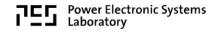
■ 5 Zones / Deepest Location → "The Challenger Deep" @ 11´034m (≈ 4°C) | 3´700m in Average

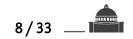

Scientific Exploration of Ocean Depths – 2/2



- Full Ocean Depth ROV Kaiko / JAMSTEC (Launcher & Vehicle) \rightarrow 10[']911m / Lost During a Typhoon New 11[']000m-Class ROV (ABISMO Automatic Bottom Inspection and Sampling Mobile)

Seabed Interventions – 1/2

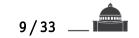

- Burial of Subsea Pipelines and Cables Jet Trenching ROVs | Ploughs | Mechanical Trenchers x 1000m Operation Depth



World's Most Powerful Trencher (T3200 / 2.4MW / DeepOcean)

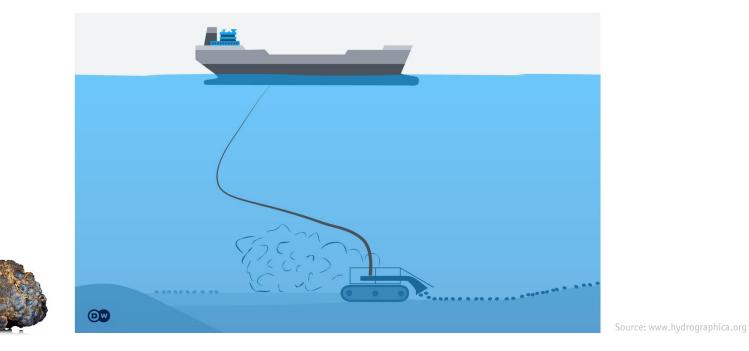
Seabed Interventions – 2/2

- Burial of Subsea Pipelines and Cables Jet Trenching ROVs | Ploughs | Mechanical Trenchers x 1000m Operation Depth

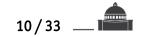


Source: DEEPOCEAN

World's Most Powerful Trencher (T3200 / 2.4MW / DeepOcean)

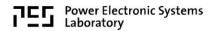


Deep-Sea Mining Vehicles – 1/2

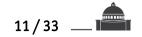

- Suction of Polymetallic Nodules (Mn, Co, Cu, etc.) @ Seabed (4000...6000m) Subsea Crushers and Pumps for Transportation of the Minerals to Supporting Vessel

Potential Serious Threat to Global Oceans !

Deep-Sea Mining Vehicles – 2/2

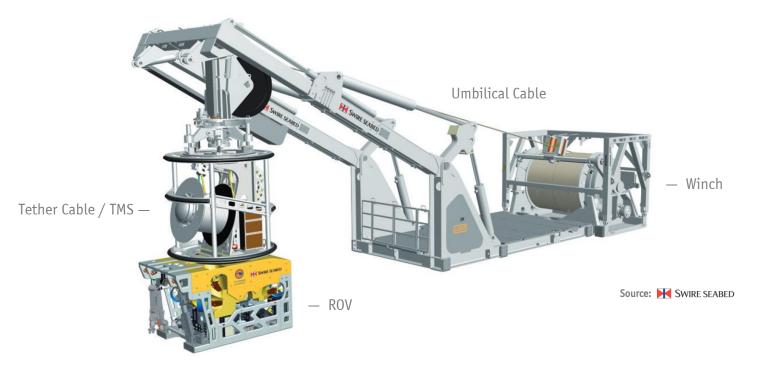

- Suction of Polymetallic Nodules (Mn, Co, Cu, etc.) @ Seabed (4000...6000m) Subsea Crushers and Pumps for Transportation of the Minerals to Supporting Vessel

Patania II 25t Robot "Nodule Collector" (tested @ 4500m)

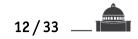


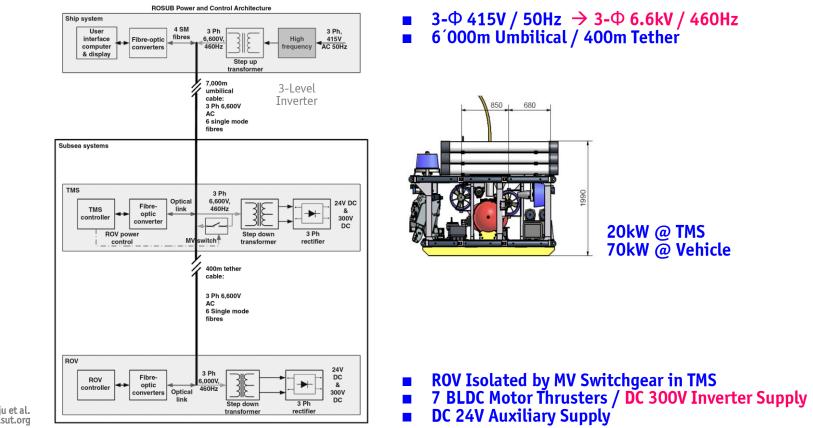
ROV Power Supply System

Architectures AC vs. DC Supply —— Thermal Load on Umbilical E-HyDrones

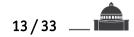


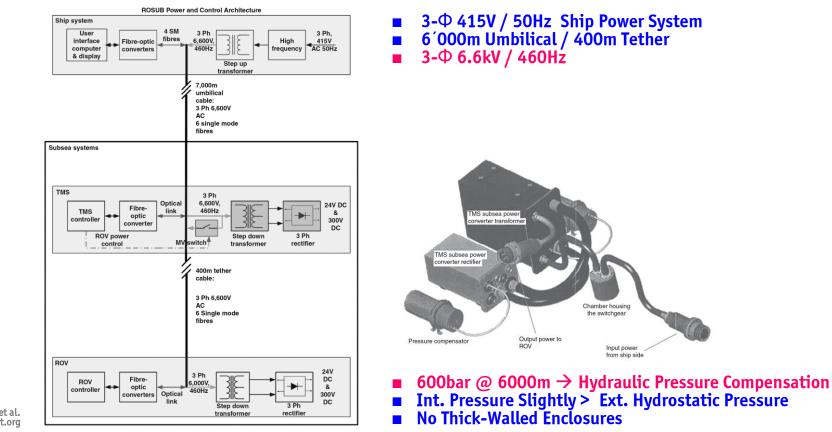
ROV Deployment


- Launch and Recovery System (LARS) & Tether Management System (TMS) Heavy Duty Electro-Optical Umbilical / Soft Neutrally Buoyant Tether

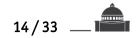


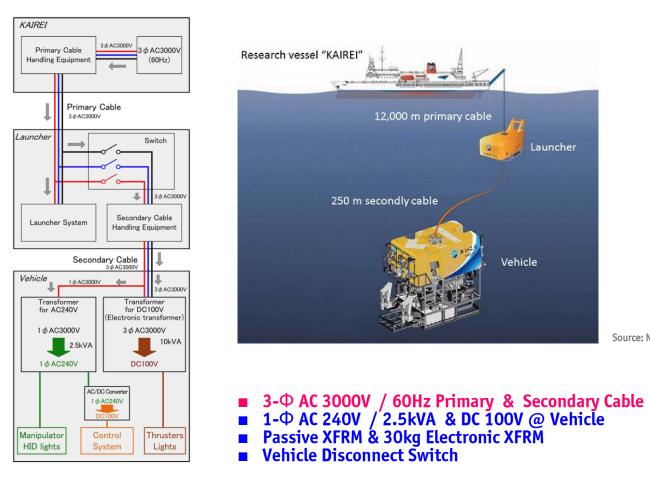
- Winch Driven by Hydraulic or Electric Power (Active Heave Compensation) TMS Decouples Lightweight Tether from Heavy Duty Lifting Cable / Umbilical




Source: Raju et al. www.sut.org

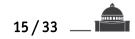
ROSUB 6000 Electric & Control System Architecture

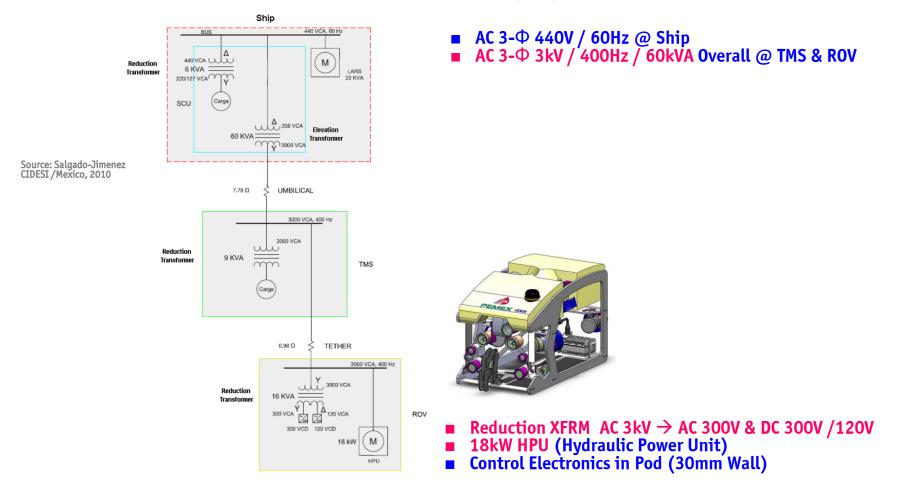



Source: Raju et al. www.sut.org

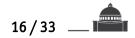
ROSUB 6000 Electric & Control System Architecture

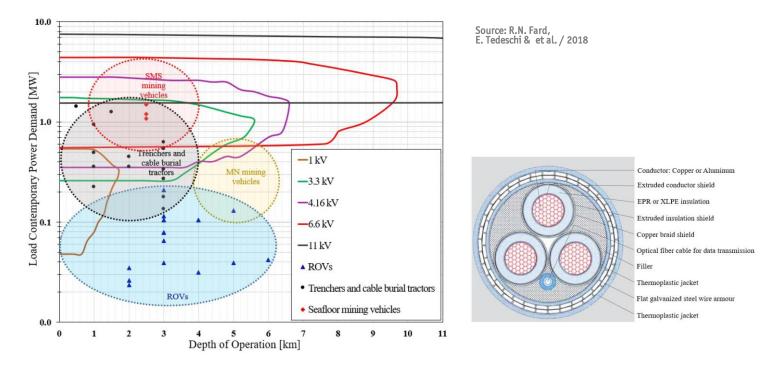

Source: Murashima et al, 2005


KAIKO 7000 Electric Power System

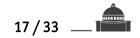


Source: Nakajoh et al, 2016

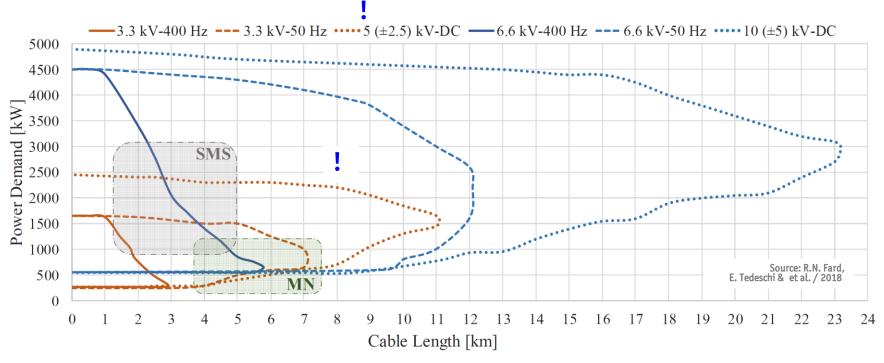



■ Concept Study for Mexican Oil Industry / 1.4m x 1.2m x 0.9 m / < 2000m

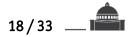
AC Power Supply Voltage Levels


- Consideration of Voltage Drop / Power Loss / Capacitive Reactive Current / Costs / Mech. Tension ROVs | MN <u>Mn N</u>odule Collectors | Seafloor Trenchers | SMS <u>Seafloor Massive Sulfide Mining Machines</u> 4000...6000m Water Depths

50Hz AC / 10% Max. Voltage Drop 1kV @ 10...240mm² | 3.3kV @ 25...240mm² | 6.6kV @ 25...400mm² | 70...400mm² @ 11kV

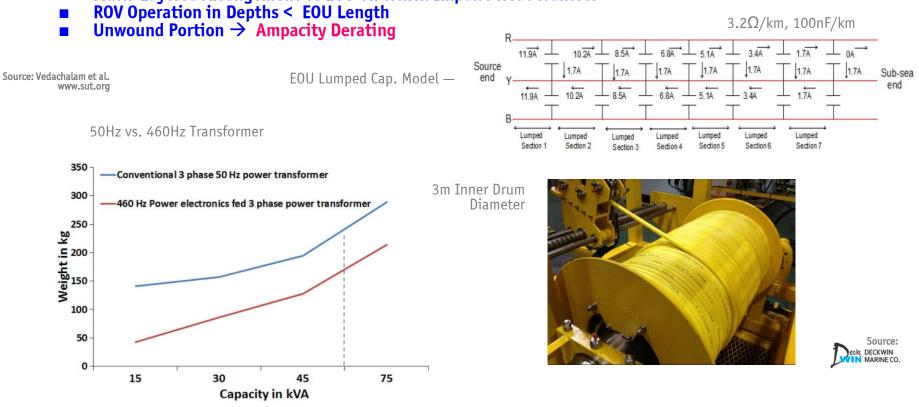


AC vs. DC Power Supply

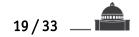

- AC @ 50Hz / 60Hz or Medium-Frequency (MFAC) vs. DC MFAC \rightarrow Lower Transformer Volume & Weight / Larger Voltage Drop / Shorter Distances DC \rightarrow High Efficiency / Low Voltage Drop / Small & Light Cable

3.3kV & 6.6kV @ 25...240mm²

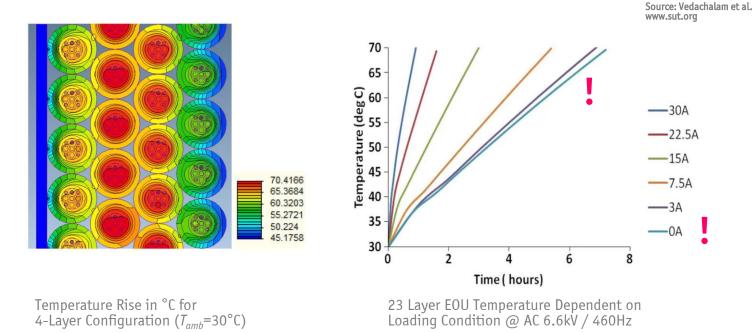
10% Max. Voltage Drop | 50% Min. / 80% Max. Cable Load


ETH zürich

Thermal Analysis of Winch–Wound Umbilical – 1/2



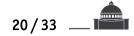
Multi-Layered Arrangement of EOU on Winch Impairs Heat Transfer


■ Higher Frequency AC Operation → Reduced XFRM Volume BUT Higher Cable Cap. Charging Current (!)

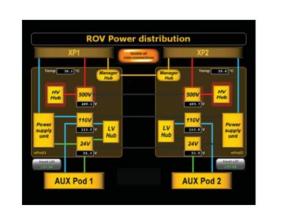
Thermal Analysis of Winch–Wound Umbilical – 2/2

- **EOU Designed for 30°C Ambient / 70°C Max. Conductor Insulation Temperature**
- 182h of Cooldown Time (70°C \rightarrow 40°C) of 32-Layered Winch-Wound EOU Non-Uniform Current Distribution / Heat-Transfer / Heating Remaining Winch Layers Determine Operation Window

3h Operation at Full Ampacity (30A) / Max. 8h Operation Under No-Load Condition



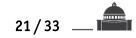
Full-Electric HyDrones



Electric ROVs

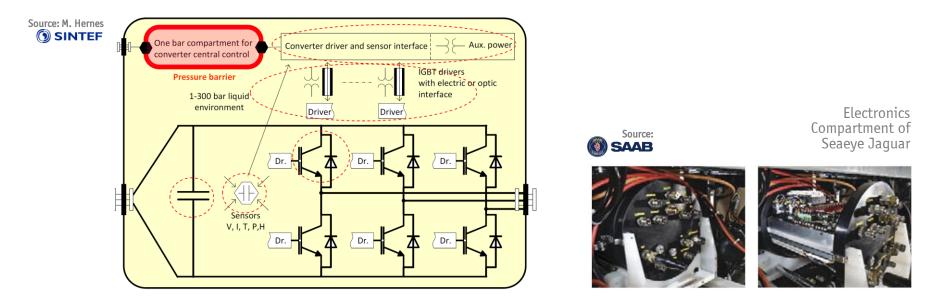
- Hydraulic Manipulators / Thrusters \rightarrow Electric Systems
- 50% Fewer Moving Parts Compared to Hydraulic Systems \rightarrow Lower Maintenance \$\$\$ 20% More Compact / 20% Lower Weight \rightarrow Smaller Diameter Umbilical / Smaller Vessel
- Higher Efficiency \rightarrow 20% More Thrust

Additional Hydraulic Power Unit for Hydraulic Tools (50l/min @ 210bar)


Source: SAAB

- **Example SAAB Seaeye Jaguar Fully Redundant Throughout the Vehicle**

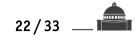
- 2 Separated Power Distribution Systems / 2 Electronics Pods 4 Horizontal / 4 Vertical DC 500V BLDC Thrusters (Thrust Vectoring) AC 3kV / 800Hz Single-Phase Supply → 2 XFRM @ ROV → AC 110V / 50Hz | DC 500V | DC 24V



Remark Pressure Housings Air or Gas Filled Components → Would Implode in Large Depths (e.g. 6000m → 600bar) One-Atmosphere Housings → Maintain Constant Inside Pressure / Cylindrical or Spherical Shape

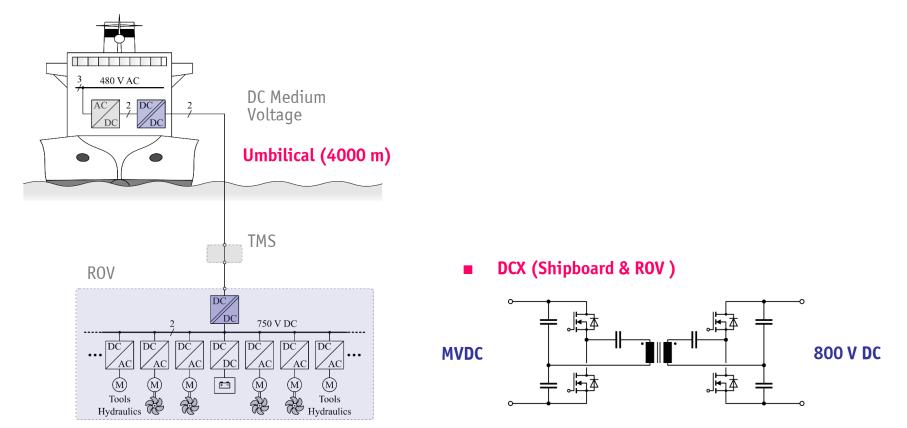
- Pressure Balanced Housings → Int. ≈ Ext. Pressure / Oil Filled No Voids / Not Shape (Cooling) Restricted !

- **Research** on Pressure-Tolerant Power Electronic Components (300 bar) @ SINTEF IGBTs \rightarrow Sw. Behavior Unaffected / Chip Interface Needs to be Protected from Surrounding Liquid Pressure Affects BH of Magnetic Cores & Impairs Self-Healing of PP Film Cap. \rightarrow Voltage Derating



Analysis of E-HyDrone DC Power Supply System

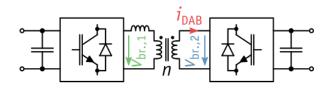
——— DC Power Supply Architecture DC-Transformer Concept System Optimization

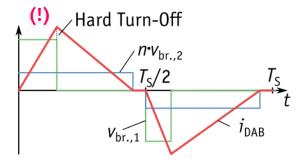


Medium-Voltage DC ROV Power Supply

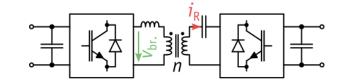
- Concept Study for 50kW ROV | Shipboard 3- \oplus PFC Rectifier AC 480V / 60Hz \rightarrow DC 800V DCX DC 800V \rightarrow DC Medium Voltage | 4000m Umbilical | DCX DC Medium Voltage \rightarrow DC 800V

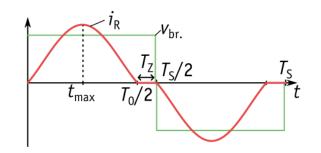
Multi-Objective Optimization — Umbilical | DCX | System

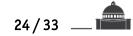

23/33 _

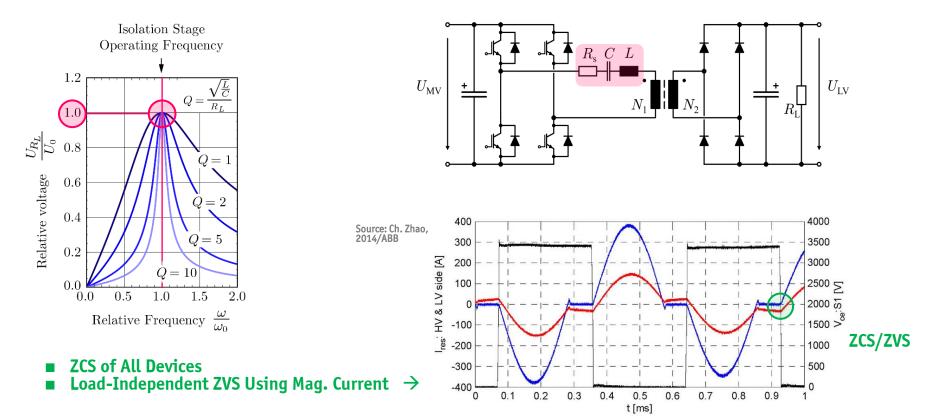

ICDCM 2021

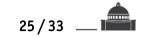
Realization Options for DC-DC Converters


- **Dual Active Bridge**
- **Control-Defined Power Flow**
- Can (Must!) Be Controlled


- DC Transformer ("DCX") Series Res. Conv. Operated @ Res. Frequency Must Not (Cannot!) Be Controlled

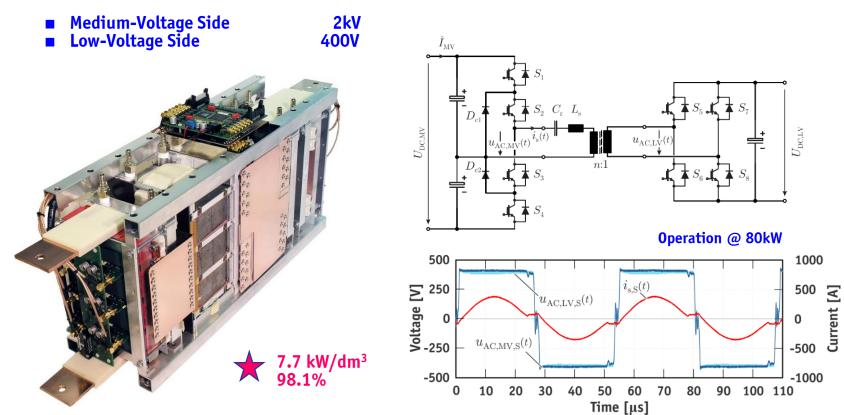

- **Triangular Current Mode**
- **MV-Side ZCS**


- **Reduces Complexity in Multi-Cell Converters**
- ISOP Autom. MV-Side Voltage Balancing
- Soft Switching

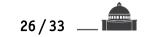


DCX Operating Principle

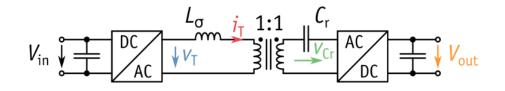
- **Resonance Frequency** \approx **Switching Frequency** \rightarrow "Unity Gain" / Fixed Voltage Transfer Ratio $U_{LV}: U_{MV}$ Independent of Transferred Power (!)

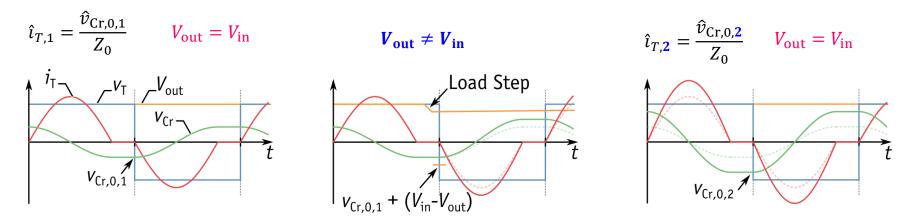


ETH zürich


166kW / 20kHz Si IGBT DCX

Half-Cycle DCM Series Resonant DC-DC Converter

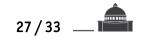




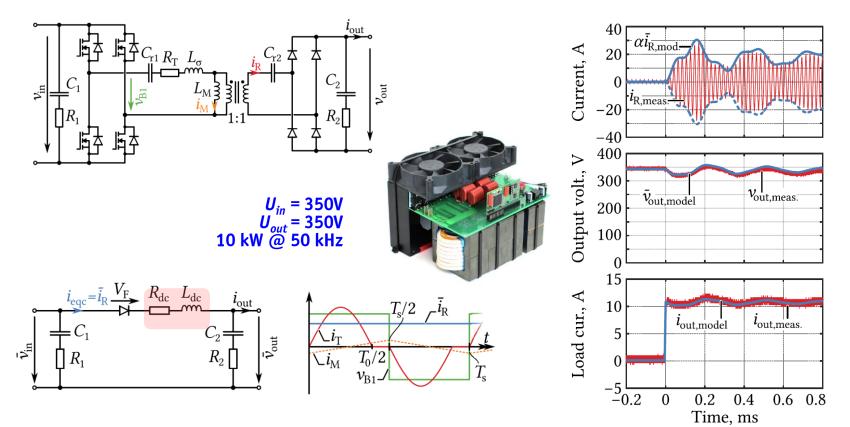
Power Electronic Systems Laboratory

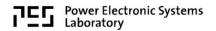
DCX "DC Transformer" Property

- Analysis of a Load Step
 Source Bridge → Actively Switched
 Sink Bridge → Passive Operation (Diodes)


Load Step \rightarrow Red. Output Voltage \rightarrow Larger Res. Circuit Excitation \rightarrow Larger Res. Current / Power Transfer

Converter Acts as "DC Transformer" (DCX) with Certain Dynamics

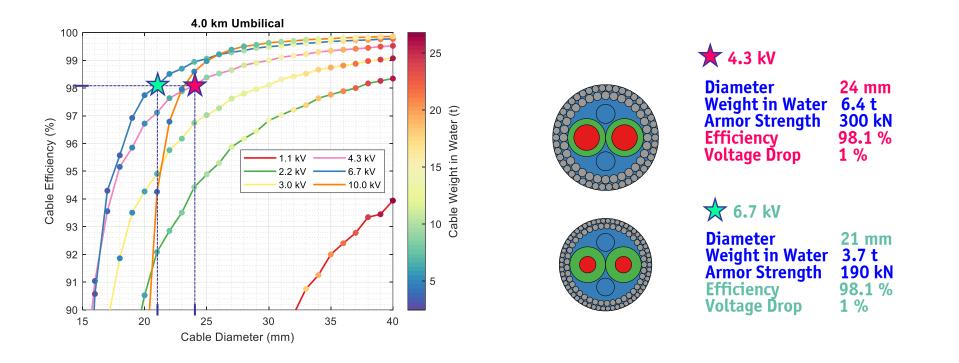

ICDCM 2021



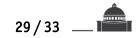
DCX Dynamic Behavior

- Dynamically Equivalent LC-Circuit with Equal Local Avg. Power Transfer Equal Energy Storage Related to Res. Current Peak Value Equal Ohmic Losses

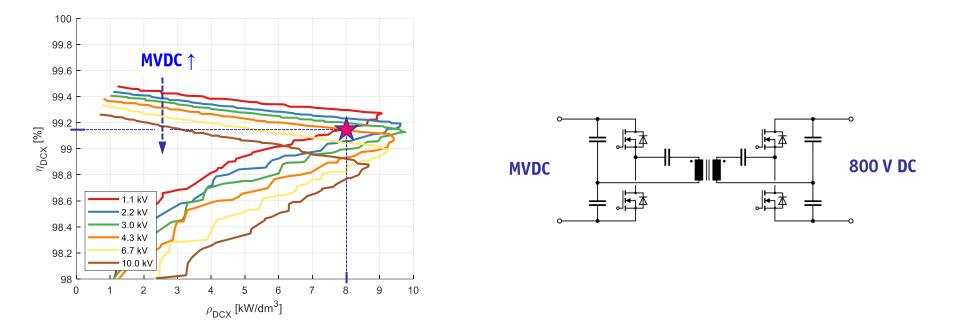
ETH zürich


Multi-Objective Optimization of DCX-Based Medium-Voltage DC ROV Power Supply

MVDC Umbilical Optimization

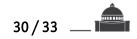

- 4000 m / 50 kW / Stranded Copper Conductor / PP Isolation Two-Layer Steel Wire Armor Dimensioned incl. TMS (Eff. Mass 1000 kg)

Trade-Off → Efficiency / Cable Diameter & Weight Given Diameter → Weight Reduces w/ Increasing Voltage (Lower Spec. Weight of Insulation Comp. to Cu)

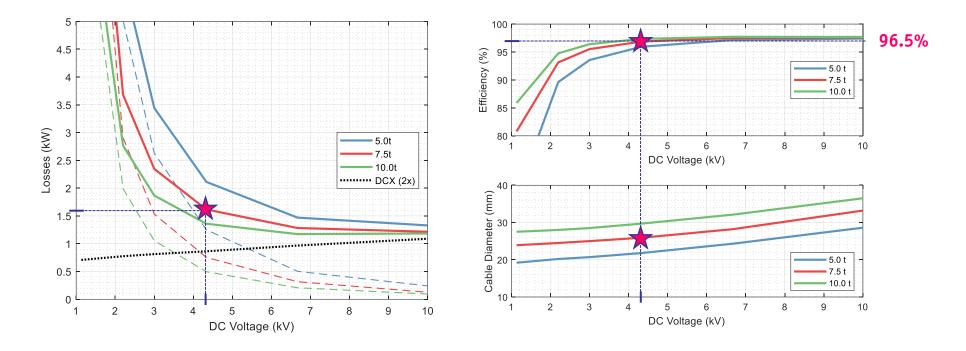


28/33 _

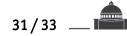
DCX Optimization


- 50 kW / MVDC → 800 V / Bidirectional SiC Power Semiconductors 1.2 kV, 3.3 kV, 4.5 kV, 6.5 kV, 10 kV | 2/3 Blocking Volt. Utilization Switching Frequency Range 20...70 kHz / Chip Area Optimization Dry-Type Medium XFRM / N87 Ferrite Cores / Litz Wire Wdg. / 10kV Isolation

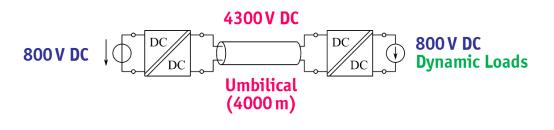
- Decreasing Semiconductor FOM for Increasing MV-Side Blocking Voltage 99.15 % Efficiency @ 8 kW/dm³ for MVDC = 4.3 kV / 6.5kV SiC Power MOSFETs & f_s = 70 kHz

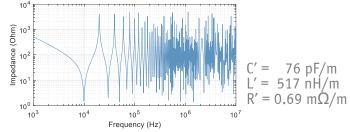


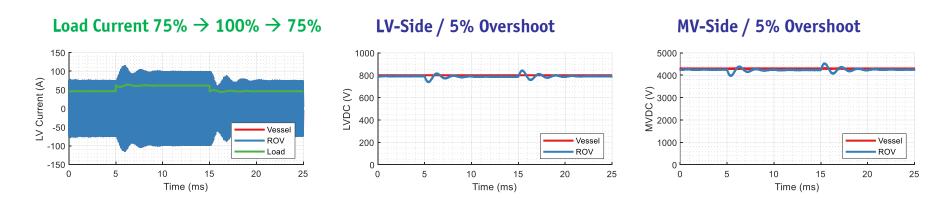
System Optimization (DCX — Umbilical — DCX)


- 50 kW | 2x DCX @ 8 kW/dm³ & 4000 m Umbilical @ 5.0/7.5/10.0 t Higher DC Voltage \rightarrow Higher DCX Losses BUT Lower Transmission Losses

4.3 kV DC \rightarrow 96.5% System-Level Eff. / 6.5 kV SiC @ f_s = 70 kHz Umbilical Mass = 7.5 t @ 26 mm Diameter | Minor Efficiency Improvement for 7.5 t \rightarrow 10 t



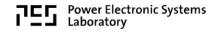


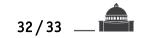

System Dynamics (DCX — Umbilical — DCX)

- Uncontrolled DCX | 4000 m Transmission Line | Uncontrolled DCX | Switched Resistive Load
- 70 uF LV DC Capacitance / 500 nF MV DC Capacitance

■ Active Damping → ROV DC/AC Converters or ROV DC/DC Battery Converter &/or Shipboard AC/DC Stage

ICDCM 2021

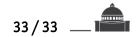




— Outlook —

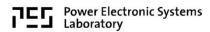
Resident Underwater Drones

- Snake Like Robots w/o Umbilical Connection to Support Vessel Subsea Docking Station for Battery Charging / Data Transfer / Assignments



Eelume – Equinor / Kongsberg Maritim / NTNU

Future Underwater Stations


- Underwater Version of the International Space Station Discovery of New Species of Marine Life / Aquacultures / Understanding Climate Change Effects

PROTEUS – First in a Network of Underwater Habitats

Thank you!

