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Abstract—This work provides an analytical method, based on
the Ampèrian model of permanent magnets (PM), for a fast
calculation of the magnetic flux density in three-dimensional
space applying Biot-Savart law, and the calculation of the
forces using Lorentz’s law. The applied approach enables the
characterization regarding forces, torques, and stiffnesses of the
levitating PM for any arbitrary position in space. Furthermore,
it permits the extension of the investigation to any shape and
configuration of ironless magnetic bearings (MB). In order to
demonstrate the simple use of the analytical model, in this paper,
the dimensions of an ironless axial MB employing PMs are
optimized with a multi-objective Pareto analysis which reveals
the physical limits concerning maximum achievable levitation
height with respect to given constraints on, e.g., the required
force and tilting stiffnesses, and the MB robustness defined by the
maximum allowable payload on the levitating magnet. Moreover,
the optimized axial MB and a corresponding test bench are
realized to validate the proposed model with experimental results.
For sake of completeness, it should be mentioned that in a later
stage the optimized MB can also be scaled with simple scaling
laws if the demanded specifications, e.g., concerning desired
maximum levitation height or payload capability would have
changed.

Index Terms—Magnetic levitation, Magnetic bearings, Perma-
nent magnets, Biot-Savart law, Lorentz force, Multi-objective
optimization

I. INTRODUCTION

Magnetic bearings (MB) consisting of axially arranged

permanent magnets (PM) and/or electromagnets (EM) are

used, e.g., in suspension devices [1], in blood pumps [2],

or in positioning applications where objects are levitated in

vertical direction [3], and in certain cases even with extremely

large levitation heights [4], [5] (see Fig. 1). Future applications

could, e.g., be found in non-touch charging of drones and

robotics, or even in manipulating objects inside a hermetically

sealed process chamber. Such PM/EM arrangements have been

analyzed in the literature [6]–[16], where, e.g., analytical

equations for the resulting axial forces are derived. However,

these closed-form equations are only valid for symmetric

arrangements. Moreover, an investigation about the passive

system stability, stiffness and robustness is not possible, since

for these calculations, the forces and torques at a certain radial

displacement have to be known. Therefore, time-consuming

3D FEM simulations have to be performed, where different

possible MB geometries are iterated to obtain the optimal MB

design.

As an alternative, in this paper, a simple analytical method

based on the Biot-Savart law is proposed in Sec. II, which

allows calculating the resulting forces and torques for any

ironless non-symmetric 3D PM/EM geometry by substituting

all PMs with equivalent current-carrying coils, so that the

magnetic flux density distribution is replicated with sufficient

accuracy. In contrast to [17], where the Ampèrian model is

successfully applied to a simple linear Halbach array, the

suggested method is not constrained by the shape of the PMs

since the path of the Ampèrian model coils is discretized

into short linear segments. Nonetheless, it is applied to an
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Fig. 1: General axial MB arrangement with ring-shaped PMs, where
also the equivalent current-carrying coils are shown.

ironless axial magnetic bearing constituted by PMs with axial

magnetization, as illustrated in Fig. 1. For instance, a similar

arrangement with PMs and stator coils, which could also

be analyzed with the proposed method, is found in motors

featuring ironless coil units [18] where the back iron parts are

explicitly omitted in order to eliminate attraction or cogging

forces between PMs and iron cores, and to achieve superior

positioning precision as well as fast dynamics with high

acceleration and deceleration capabilities. Further applications

are, e.g., found in weight optimized ironless flywheels where

Halbach arrays are employed [19]. Moreover, the considered

analytical model could also be used in combination with the

method of images [20], to determine the magnetic forces and

torques in MBs and motors incorporating PMs and simple

structures of magnetic materials. In [21], for example, the

method of images was applied in combination with the surface

charge model of PMs [20] to calculate the radial and axial

magnetic forces in an axial MB of a highly reliable fan, or

in [22] it is used to design a suspension system for a micro-

lithography application where precise movements are required.

In this paper, the purpose of using PMs in the axial MB is to

generate large passive vertical forces, which result in an effi-

cient levitation of the levitating PM, hereinafter called mover.

However, as stated by Earnshaw’s theorem [23] (Sec. III), a

passive stabilization of each degree of freedom (DOF) of the

mover is not possible. Therefore, the proper integration of EMs

is essential to actively control the remaining unstable DOFs of

the mover and to stabilize its position. The design of the EMs

is not further discussed in this work, however, in Sec. IV it is

shown that the selected dimensions of the MB as well as the

relative magnetization direction between the two PMs define

which and how many DOFs remain unstable. Hence, different

passive stability types depending on the number of passively

stable DOF and stiffnesses are defined in Sec. IV.

To demonstrate the simple use of the analytical model, in

Sec. V, the axial MB is optimized such that the maximum

possible levitation height is achieved for given constraints as,

e.g., the tilting stiffness and the maximum payload the mover

can carry. As shown in Sec. VI, for a minimum tilting stiffness

of 1mNm/° and a demanded payload capacity of 50 times the

mover weight, the optimized axial MB features a maximum

diameter of 130mm, i.e., the characteristic dimension of the

MB, a maximum magnet height of 21mm, and a payload
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capacity of 17 kg. Moreover, it is found that a characteristic

dimension related levitation height (CDRLH) close to 1.0
can be achieved, clearly outperforming existing commercial

systems, which achieve CDRLHs around 0.5 [4], where the

levitation height is only half the characteristic dimension.

Further, in Sec. VII, the performance of the axial MB

is tested on a 6DOF platform, where the stationary PM,

hereinafter called stator, can be brought into different positions

and distances relative to the mover in order to experimentally

verify the analytically calculated forces and torques.

For the sake of completeness, instead of iterating through all

possible combinations in the Pareto optimization, in App. A,

scaling laws are derived from the analytical equations which

directly allow calculating the resulting forces, torques, stiff-

nesses, and levitation height for a scaled version of the

characterized MB.

II. ANALYTICAL MODEL DESCRIPTION

A. Ampèrian model of permanent magnets

As also described in [24] and applied in [15], [17], to repli-

cate the magnetic field generated by the axially-magnetized

ring PMs, current-carrying coils with the same inner and outer

radius as well as the same height as the PMs can be used (see

Fig. 1). The current direction is given by the polarity of the

PMs, whereas the amplitudes Is and Im are determined with

Ampère’s law as [25]

Ii =
Hci,i · hi

Ni

with i = {s,m}, (1)

where Hci,i is the coercive field (955 kA/m for the inves-

tigated Neodymium-Iron-Boron magnets), hi is the height of

the PM, and Ni is the number of turns of the model coil.

In the following, for the approximation of the PM’s mag-

netic flux density, a lumped single-turn coil (Ni = 1) located

at the center of the height hi is assumed (see Fig. 2 and

Fig. 4 (a)). This choice, on the one hand leads to the lowest

computation effort, while on the other hand for the far field

calculation a sufficient accuracy is achieved. To also improve

the accuracy of the near field calculation, a distributed multi-

turn coil along the total height hi is possible (Fig. 4 (b)),

which consequently implies an increased computation effort.

B. Simplified 2D analysis

To introduce the proposed analytical method, it is assumed

that the internal radii rm,int and rs,int of the two ring-shaped

PMs are zero. Hence, the most simple MB configuration with

two disc-shaped PMs is obtained as depicted as cross-section

view in Fig. 2.

For this axially symmetric arrangement, a simplified 2D

analysis can be conducted, where each of the two PMs are

substituted by two straight and infinitely long conductors

carrying the same current Ii1 = Ii2 in opposite directions.
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Fig. 2: Cross-section view of two disc-shaped PMs (see Fig. 1 with
rm,int = rs,int = 0), explaining the Lorentz forces acting on the
mover coils. Both conductors modeling the stator PM generate a force
on both conductors modeling the mover PM, whose direction can be
determined with the right-hand rule.

Based on Ampère’s law, the magnetic flux density generated

by each of the two stator conductors can be determined for

each position in space, and decays with 1/r, where r is the

distance from the considered stator conductor to the magnetic

flux density evaluation point. Based on the right-hand rule,

the magnetic flux density, always points in tangential direction

with respect to r (see Fig. 2). Hence, the Lorentz force acting

on each mover conductor can be directly determined with the

superposition of the two force components acting from the

two stator conductors. There, the force vector always lies in

the connection line between the considered stator and mover

conductors and, depending on the current directions, results

in an attractive or repulsive force (see Fig. 2). Consequently,

the total force acting on the mover is the sum of each force

contribution, i.e., Ftot = F11 + F12 + F21 + F22. For this

symmetrical case, the total force only acts in the axial direction

because the xy-forces cancel each other out. However, in the

general case, where the mover is, e.g., displaced from the cen-

ter in x-direction, Ftot results in a net force component acting

in x-direction. In addition, the z-force components acting on

each of the two mover conductors are not equal, meaning that

a torque in y-direction is created. Consequently, the mover

experiences a horizontal displacement in x-direction while

rotating around the y-axis. The 2D analysis of this general

case, however, is only true for infinitely long and straight

conductors, and can be applied to approximately calculate

the forces for axially symmetric arrangements. Hence, to also

investigate arbitrary configurations with, e.g., displaced or

tilted movers, an analytic 3D analysis has to be performed.

C. 3D analysis, magnetic flux density calculation

In a homogeneous medium, the Biot-Savart law allows

calculating the magnetic flux density vector B at any point

in 3D space generated by a conductor carrying the current Is
as

B =
µ

4π

∫
C

Isdls

r2
×

r

r
, (2)

where in the following µ = µrµ0 = µ0 is assumed. There,

dls is the vector representing an infinitesimally small piece

of conductor pointing in the direction of the current Is, and

r is again the distance vector between the considered piece

of conductor and the evaluation point of the magnetic flux

density. In case of a circular conductor, the solution of (2)

contains elliptic integrals that need to be evaluated with nu-

merical integration [26]–[28]. According to [29], the approach

used in this paper is to approximate the integral of (2) with

a finite sum of field components, such that the magnetic flux

density generated by any kind of current-carrying conductor

can be calculated. Accordingly, the single-turn coils of the

mover and stator are discretized in a finite number Npts of

conductor segments with arc length ∆li, which are represented

by their corresponding center points as shown in Fig. 3.

Hence, in order to calculate the magnetic flux density at the

center points of each mover segment, the magnetic flux density

contribution of each stator segment has to be evaluated as

∆Bj =
µ0

4π
·
Is∆ls

r2
×

r

r
, (3)

where the length of the vector ∆ls is given by the arc length

between two adjacent center points on the stator winding and

its direction is determined by the direction of the current Is at

the corresponding center point, i.e., always tangential to the

circular winding. The distance vector r equals the distance

between the considered center points.
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Fig. 3: Discretization of the Ampèrian model coils of Fig. 1 for
rm,int = rs,int = 0 and Ns = Nm = 1, where the magnetic flux
density, forces, and torques are reported.

Accordingly, the total magnetic flux density acting on one

mover center point is given by

B =

Npts∑
j=1

∆Bj =
µ0

4π

Npts∑
j=1

Is∆ls

r2
×

r

r
. (4)

D. 3D analysis, force and torque calculation

Knowing the magnetic flux density at each mover coordinate

or center point, the Lorentz force Fk acting on each mover

segment (Fig. 3) needs to be calculated to determine the total

force applied the mover as

Ftot =

∫
Imdlm ×B ≈

Npts∑
k=1

Fk =

Npts∑
k=1

Im∆lm ×B. (5)

Accordingly, the total torque referenced to the center of

the mover winding is calculated by summing the radius-force

products of each mover point, i.e.,

Ttot =

Npts∑
k=1

Tk =

Npts∑
k=1

rm × Fk, (6)

where rm is the radius vector pointing from the center of

the mover’s winding to a segment center point on the mover

winding.

The number of discretization points Npts determines the

precision of the finite sum approximation and the required

computation time. It has been observed that for Npts ≫ 1, the

force/torque error decays exponentially with Npts, whereas

the computation time grows quadratically with Npts, since for

the magnetic flux density calculation of each mover segment,

each stator segment has to be considered. Consequently, for

this work, a discretization of Npts = 100 was chosen, which

reveals a sufficient accuracy at a moderate computation effort.

E. Further considerations

In a case, where the stator and mover are realized as ring-

shaped PMs, four model coils with radius rs,int, rs,ext, rm,int,

and rm,ext are required, where the currents in the inner and

outer coil of each ring-shaped PM are pointing in opposite

direction (see Fig. 1). In the simplest case, where single-turn

coils are considered (Fig. 4 (a)), the calculation of the forces

and torques has to be conducted for all combinations of coil

pairs, where a pair is constituted by a stator and a mover coil.

However, as already mentioned, the accuracy of the simu-

lated magnetic flux density distribution depends on the coil’s

number of turns Ni and the distance h between the PMs

(see Fig. 4). Especially in the near field region, a distributed

multi-turn coil (Fig. 4 (b)) results in a more accurate field

calculation compared to the lumped single-turn coil (Fig. 4

(a)). Hence, for relatively small distances h compared to hi

(h ≪ hs, hm), the multi-turn approach must be used. Thus, the
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Fig. 4: Magnetic flux density distribution of the stator PM in a 2D
plane for the case h ≪ hs, hm with (a) single-turn model coils Ns =

Nm = 1 and (b) multi-turn model coils Ns = Nm = 4. (c) Example
of force calculation for different numbers of model turns Ns and Nm

considering the same MB, where it can be seen that the single and
double-turn models define the bounds for all other force calculations
with Ns = Nm ≥ 3.

forces and torques between each stator and mover turn have to

be calculated, which means that compared to the single-turn

approach, the computational effort for the multi-turn winding

approach increases by Ns ·Nm.

For the considered axial MB, however, where extremely

large levitation heights are pursued, i.e., h ≫ hs, hm, the

single and the multi-turn models result in a similar far field

distribution; thus, similar forces and torques are obtained as

shown later in Fig. 6, Fig. 15 and Sec. VI. This justifies the

described procedure, where in a first step, the single-turn coil

approach is used for a coarse Pareto optimization to speed

up the computation time, while in a second step, the force

and torque calculation is refined to obtain precise results (see

Fig. 15 (b)-(d)).

Furthermore, there is an interesting fact that the single-turn

(Ns = Nm = 1) and the double-turn model (Ns = Nm = 2)

define the bounds for the calculated forces and torques,

whereas the multi-turn models with Ns = Nm ≥ 3 yield

values between these bounds, i.e., the calculation error decays

with increasing number of model turns as it is shown in Fig. 4

(c) for a particular case with randomly selected values for h,

hs, and hm and as also verified later for the force calculations

of the optimal MB (see Fig. 15).

III. PASSIVE STABILITY

The derived analytical method enables an extensive analysis

regarding the behavior of the mover in 3D space. Therefore,

in a first step of the design process, the passive stability

of the mover, i.e., the DOFs which are already passively

stable only due to the presence of the PMs, is analyzed

for its nominal operating or levitation position. As stated by

Earnshaw’s theorem [23], not all six DOFs of the mover (see

Fig. 5 (a)) can be stabilized passively. However, as shown

in the following, depending on the selected dimensions of

the axial MB, different stability types with different amount

of passively stable DOFs or different properties concerning

stiffnesses are obtained. At the end, a stability type which

on the one hand enables a high levitation height, and on the

other hand minimizes the sensing and control effort of the

EMs to actively control the remaining unstable DOFs, should

be selected.

A. Displacement Method

The applied method to determine the passively stable DOFs

of the mover is to displace the mover from a nominal levitation
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Fig. 5: (a) Illustration of the mover’s six DOF with its coordinate
system spanned by (xm, ym, zm), where a translation and a rotation
along each axis is possible. (b) Axial displacement of the mover
needed to calculate the gradient dFz/dz. (c) Rotation around the
y-axis of the mover needed to calculate the gradient dTy/dθy.

position, e.g., vertically centered above the stator, and to

compute all forces and torque for this position. From these

values, for each DOF, the corresponding force and torque

gradients can be determined, e.g., the axial force gradient

dFz/dz is determined by calculating the change of force dFz

for a certain displacement dz of the mover in z-direction

(Fig. 5 (b)). Similarly, to calculate the torque gradient of a

rotational DOF, the mover is tilted or rotated as, e.g., illustrated

in Fig. 5 (c) to obtain the torque gradient dTy/dθy. As a

result, a negative gradient value, i.e., a force or torque acting

in opposite direction to the virtual displacement, is associated

with a stable equilibrium, whereas a positive gradient value

indicates an unstable equilibrium. The magnitude of the gra-

dient is defined as stiffness, which characterizes the dynamic

behavior of the mover around the equilibrium. A gradient that

equals zero means that the equilibrium is marginally stable,

i.e., neither stable nor unstable.

B. Passive stability types

These force and torque gradients as well as the stiffnesses

are now analyzed for the axial MB. If the mover is located at

its nominal axially centered position at a certain height h (the

MB is axially symmetric) the following holds

Fx = Fy = 0 (7)

Tx = Ty = 0 (8)

Tz = 0 (9)

dFx/dx = dFy/dy (10)

dTx/dθx = dTy/dθy (11)

dTz/dθz = 0. (12)

In contrast to the general case, (10), (11), and (12) im-

ply that the stability properties for the axially symmetric

MB can be derived with a reduced computation time, since

only three gradients have to be determined, i.e., dFx/dx,

dFz/dz, and dTy/dθy. Another direct implication of (12)

is the marginal stability of the torque in axial direction.

Moreover, as explained in [23] and applied in [1], [6], [7],

[21], the divergence of the force vector between permanent

magnets in a homogeneous medium is given as

∇ · F =
dFx

dx
+

dFy

dy
+

dFz

dz
= 0, (13)

which in combination with (10) results in

dFz

dz
= −2 ·

dFx

dx
. (14)

It is important to mention that even though (14) holds

for the arrangement presented in this paper, the proposed

analytical model does not rely on these assumptions regarding

symmetry, however, they have been observed as a result of the

calculations. Consequently, the following conclusions can be

drawn. First, (14) excludes a simultaneous stability of all three

force components. Second, a passive force stability is only

possible in either axial or radial direction, and third, at least

one force component must be stable, thus a passive stability

type with only torque stability is not possible. Consequently,

with these restrictions given for axially symmetric MBs with
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Fig. 6: (a) Stability regions for different levitation heights h de-
pending on the mover radius rm,ext for two axially centered disc-
shaped PMs with rs,ext = 50mm, hm = 5mm, and hs = 10mm.
(b) Axial magnetic force versus axial position of the mover with
rm,ext = 110mm, where the levitation positions for Fz = Fg

are highlighted. The gradient of Fz reveals that at h1 the passive
levitation is stable, while at h2 it is unstable.

both magnets centered on the axial axis, only four types of

passive stability are possible:

I. (Fz): the mover is stable against axial displacements, i.e.,

only one DOF is passively stable;

II. (Fxy): the mover is stable against radial displacements,

i.e., two DOFs are passively stable;

III. (Fz, Txy): in addition to (Fz), the mover is also stable

against tiltings in xy-direction, i.e., three DOFs are pas-

sively stable;

IV. (Fxy, Txy): in addition to (Fxy), the mover is also sta-

ble against tiltings in xy-direction, i.e., four DOFs are

passively stable.

The advantage of the stability types (Fxy, Txy) and (Fz, Txy)

over the other stability types is the lower number of unstable

DOFs, which translates to a simpler design of the active

controller. Since Tz is marginally stable and for the axial

MB must not be actively stabilized, with (Fz, Txy) only two

DOFs, i.e., the radial displacement in xy-direction, and with

(Fxy, Txy) only one DOF, i.e., the levitation height in z-

direction, have to be actively controlled.

IV. DEPENDENCE OF MB DIMENSIONS ON LEVITATING

PROPERTIES

The question now arises how the axial MB has to be

designed such that a certain stability type with a high stiffness

is obtained. In order to demonstrate this, this section starts

with a design example consisting of two disc-shaped PMs with

opposing magnetization direction. There, the mover’s external

radius rm,ext is used as a variable, whereas the other dimen-

sions are chosen as rs,ext = 50mm, rs,int = rm,int = 0mm,

hs = 10mm, and hm = 5mm. In the following, it is shown

that with different rm,ext, different stability types are obtained.

Furthermore, it is highlighted that the passive tilting stiffness

of the mover can be improved by using ring-shaped instead

of disc-shaped PMs.

A. Stability regions and levitation height

The first step of the design example is to determine the sta-

bility type obtained for different rm,ext and levitation heights

h combinations, while the radial position is always kept zero.

Fig. 6 (a) shows the resulting stability types derived with

the displacement method for each rm,ext-h combination. It

can be noticed that the preferred stability types with the

highest number of passively stable DOFs, i.e., (Fz, Txy) in the
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orange region and (Fxy, Txy) in the yellow region, are only

obtained for rm,ext ≥ 36mm. It should be mentioned that

the colored regions have been generated with the fast model

(Ns = Nm = 1), and the boundaries between the regions

have been proven to be satisfyingly precise with the multi-

turn model Ns = Nm = 4 as indicated with white lines.

To complete the picture, the levitation height h at which the

mover will passively settle has to be determined, which is

found for the case where the axial force Fz is equal to the

gravitational force Fg of the examined PM, i.e. Fz = Fg, as

indicated in Fig. 6 (a) with a dashed line. It can be noted that

with the smallest considered mover radius rm,ext the largest

levitation height of hmax = 137mm is achieved. At this

design point, however, only Fz is passively stable, meaning

that tiltings and radial displacements of the mover have to be

actively controlled. Furthermore, only low axial forces Fz and

low MB stiffnesses are achieved. Therefore, it is beneficial to

choose a design point in the orange region (Fz, Txy), where

at the expense of a certain levitation height reduction (min.

2.5%), a passive tilting stability in xy-direction is gained, such

that only the mover’s radial displacements in xy-direction have

to be actively controlled.

With a further increase of rm,ext, the levitation height h
continuously decreases and above a certain value even two

operating points with Fz = Fg are found. To explain this

behavior, Fig. 6 (b) illustrates the calculated axial magnetic

force Fz with respect to h for rm,ext = 110mm. As can

be noted, only the levitation height h1 is passively stable,

since at lower h < h1, the axial force increases (Fz > Fg)

and therefore would lift the mover up again. This is also

found by the fact that the force gradient dFz/dz around this

operating point is negative (stable), while around h2 it is

positive (unstable).

Hence, with the above considerations, for the design exam-

ple the mover radius is chosen to be rm,ext = 63mm which

means that the levitation height is maximized for the stability

type (Fz, Txy) (see Fig. 6 (a)). For the sake of completeness,

it should be mentioned that the yellow region with stability

type (Fxy, Txy), which offers the highest number of passively
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radius rm,ext = 63mm, the largest levitation height for the stability
type (Fz, Txy) is obtained. Trends of (b) the axial and gravitational
forces, (c) the levitation height h, and (d) the tilting stiffness with
respect to the mover internal radius rm,int. rm,int is selected to be
26mm such that a tilting stiffness of 1mNm/◦ is ensured, while the
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stable DOFs, is relatively narrow; thus, is difficult to obtain,

and also results in an much lower levitation height compared

to (Fz, Txy).

B. From disc-shaped to ring-shaped PMs

A further possibility to increase the levitation height h is,

e.g., to reduce the mover weight and, therefore, the gravita-

tional force Fg by increasing its internal radius rm,int, i.e., by

passing from a disc-shaped to a ring-shaped mover PM. At

the same time, however, also a decrease of the axial force

Fz has to be expected, since the needed additional model

coil placed at the mover’s internal radius (Fig. 1) generates

an attractive force in combination with the stator coil due

to its opposite current direction compared to the external

mover coil. As derived in App. A and shown in Fig. 7 (b),

even though Fg reduces with the square of rm,int, while

the axial force Fz only decays proportionally with rm,int,

the levitation height h decreases with increasing rm,int (see

Fig. 7 (c)), since Fz is always lower than Fg as highlighted

in Fig. 7 (b). However, as illustrated in Fig. 7 (d), the major

advantage of a ring-shaped mover compared to a disc-shaped

magnet (rm,int = 0mm) is the fact that with increasing rm,int

(up to rm,int = 46mm), the negative torque gradient and

thus also the tilting stiffness (magnitude of the gradient) are

substantially increasing. Assuming a minimum required tilting

stiffness of 1mNm/◦, an optimum internal mover radius of

rm,int = 26mm is found. This 35 times larger stiffness

compared to the disc-shaped mover PM comes at the expenses

of only 3mm in levitation height, i.e., a reduction of 2.5%
(cf. Fig. 7 (a) and (c)).

The same sensitivity analysis can also be conducted for the

stator internal radius rs,int, while again a disc-shaped mover

with rm,ext = 63mm is assumed. For the ring-shaped stator,

an additional model coil with opposite current direction has to

be considered, which results in a reduction of the axial force
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Fz. Since the mover’s dimensions are kept constant, also Fg

of the mover remains constant. Consequently, the levitation

height decreases with increasing rs,int as shown in Fig. 8 (a).

As already observed for the variation of rm,int, the tilting

stiffness increases for a ring-shaped stator (see Fig. 8 (b)),

however, to reach the same stiffness as with a ring-shaped

mover, the levitation height drops substantially by 34mm, i.e.,

28% compared to a disc-shaped stator.

Besides changing the inner and outer radii of the PMs, also

the PM heights hs and hm can be varied. Starting with the

variation of the stator height hs, while keeping the other PM

dimensions constant (rs,ext = 50mm, rs,int = rm,int = 0mm,

rm,ext = 63mm, and hm = 5mm), it is expected (and also

mathematically derived in App. A) that the axial force in-

creases linearly with hs, since based on (1) also the equivalent

coil current, and thus the Lorentz force increase linearly. This

means that the levitation height h increases, as the gravitational

force of the mover remains unchanged. However, as already

observed in Fig. 6, the stability type changes depending on the

levitating height h. Consequently, for the design example, the

stator height must be limited below hs = 10mm, to maintain

the desired stability type (Fz, Txy) (see Fig. 9 (a)).

Now, for the fixed stator height hs = 10mm, the mover

height hm is varied to address the corresponding stiffness sen-

sitivity. As detailed in App. A, all forces and gradients scale

linearly with hm, which means that also the tilting stiffness

increases (see Fig. 9 (b)). However, the levitation coordinate

zh (the axial coordinate of the mover’s center point) remains

the same, while the effective levitation height h decreases with

increasing mover height (h = zh − hs/2 − hm/2). Thus, hm

can finally be used to tune the stability properties, while again

a slight levitation height reduction has to be accepted.

Concluding this section, the simple example showed that

the effective levitation height h cannot be increased by re-

ducing the weight of the mover, i.e., increasing the internal

radius rm,int. However, with a ring-shaped mover, a strongly

enhanced tilting stiffness can be gained at the expense of

a slight levitation height reduction. Similarly, with a ring-

shaped stator, the tilting stiffness can also be increased, but the

reduction in levitation height is much stronger. In contrast, the

stator height hs increases the levitation height only up to some

extent, determined by the stability type of the levitation point.

Finally, by varying the mover height hm, the stiffnesses can

be linearly tuned, affecting the levitation height by −hm/2.

V. OPTIMIZATION PROCESS

In the example above, only one dimension has been varied

at a time to analyze the sensitivity of the levitation height h
on different design parameter and to determine the passive

stability properties. In the following, an optimization is per-

formed where all mentioned dimensions are varied iteratively

and the resulting characteristics of the levitation points are

determined to find the optimal axial MB arrangement for the

given application requirements.

A. Optimization targets

In the design process, for a given geometry, the resulting

levitation height h is determined, where the mover is assumed

to be centered on the axial axis and Fz = Fg (see LP1 and

LP2 in Fig. 10 (a)). Afterwards, the gradients of three mover’s

DOF , i.e., dFx/dx, dFz/dz, and dTy/dθy of these levitation

heights are calculated, such that the stiffnesses and the stability

properties can be obtained. Due to the axial symmetry of

the MB, also the remaining gradients can be evaluated with

(10)-(12). From the obtained passive stabilities, the stability

types can be determined. For the optimization process, only
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Fig. 10: (a) Illustration of the axial robustness with passively stable
levitation point LP1. The mover can be loaded with an additional
payload up to Fz,max before the stability properties of the original
levitation point are violated. (b) Illustration of the rotational robust-
ness for the levitation point LP1 of (a). As soon as the maximum
torque/rotation Ty,max is exceeded, the mover loses its ability to reject
external torque disturbances.

designs with (Fz, Txy) and (Fxy, Txy)-stability are considered

(LP1 in Fig. 10 (a)), whereas designs with other stabilities are

discarded (LP2 in Fig. 10 (a)).

A further essential aspect is the achievable robustness,

which is a measure for the magnitude of the external dis-

turbance or the maximum displacement/rotation the mover

can withstand maintaining the same stability properties as in

the original levitation point, and can be divided into three

categories.

The axial robustness is defined as the maximum axial force

Fz,max that can be applied to the mover, i.e., the maximum

payload capacity (Fig. 10 (a)). This means that, e.g., the

mover levitating at LP1 can be loaded with an additional

payload. Consequently, the levitation height reduces, until for

the maximum payload, the minimum levitation height hmin

is achieved. For levitation height below hmin, the stability

properties change, meaning that the active control has to be

changed and the payload has to be reduced again.

The rotational robustness is defined as the maximum torque

the mover can withstand such that the same stability type

as in the horizontal position can be maintained (Fig. 10 (b)).

Rotations with an angle larger than θy,max cause the mover

to lose its ability to stabilize tilting disturbances. The shown

torque curve versus the tilting angle is an odd function since

the mover is centered on the axial axis; therefore, it holds

θy,min = −θy,max and Ty,min = −Ty,max.

The radial robustness is related to the maximum devia-

tion/displacement of the mover from the axial center position

in x-direction xmax until the mover loses its initial stability

properties obtained at the levitation point with x = 0 (Fig. 11).

The initial levitating position is indicated with LP1, where

the mover levitates horizontally centered on the axial axis.

T
y
 = 0

z

y x

h

x
max

x
m

θ

LP
1

Fig. 11: Cross-section view of the PMs with the mover initially
positioned at the levitation point LP1 of Fig. 10 (a) and subjected to a
radial displacement in x-direction to determine the radial robustness.
For each x-position, the tilting angle θ has to be determined such
that Ty = 0. For x > xmax, the mover loses a stable component of
the initial stability type (Fz, Txy).
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For each investigated x-position (x > 0), the new force and

torque equilibrium has to be found, in which the mover has

only to be actively stabilized in axial or radial direction,

depending on the stability type at LP1. This is done in two

steps: the tilt angle θ has to be determined such that the y-

torque becomes zero (Ty = 0), while the new levitation height

is again found with Fz = Fg. Hence, compared to the axial

and rotational robustness, the computational effort is larger due

to the iterative computation to find the equilibrium position

for each x-position. It should be mentioned that for (Fz, Txy)

stable MBs, it is important to have a wide range of radial

robustness since this also allows the mover to deviate from

its nominal axially centered position, and gives the sensor and

the position controller enough headroom to sense a position

change and bring the mover back to its nominal levitation

position again. In contrast, for (Fxy, Txy) stable MBs, xmax is

related to the passive robustness since in this case, the radial

position is not actively controlled.

B. Multi-objective optimization

As mentioned, the proposed geometry optimization is con-

ducted by varying the dimensions of the MB and calculating

their levitation points, stability properties, and robustnesses.

Moreover, an additional degree of freedom is given by the

relative magnetization direction between stator and mover.

For two disc-shaped PMs, a repulsive force is only obtained

for PMs having opposite polarities. However, when at least

one PM is realized as a ring-shaped PM, depending on the

dimensions, both relative magnetization directions can result

in a repelling force. Therefore, in the optimization process

seven design parameters could be iterated: rs,int, rs,ext, hs,

rm,int, rm,ext, hm, and the relative magnetization direction.

In order to reduce the computation effort, in the following,

the stator external radius is fixed to rs,ext = 50mm. As

shown in App. A, based on the derived scaling laws, the

resulting optimum MB can be scaled to any other external

stator radius in a post-processing step. Due to the same reason,

also the mover height is fixed to hm = 5mm, since in a

post-processing step, the forces and torques can be scaled

linearly with the mover magnet thickness hm (see App. A).

Hence, the optimization is constrained to the remaining five

design parameters: rs,int, hs, rm,int, rm,ext, and the relative

magnetization direction.

VI. OPTIMIZATION RESULTS

In Fig. 12 (a), the optimization results of all geometries,

which result in a (Fz, Txy) stability type, are represented

as a 3D Pareto plot, where the maximum levitation height

related to the characteristic dimension of each design, i.e., the

characteristic dimension related levitation height (CDRLH),

is evaluated with respect to its axial relative payload capa-

bility Fz,max/Fg and its rotational absolute tilting stiffness

dTy/dθy. In addition, the color bar highlights the gradient of

the unstable xy-force component dFx/dx (due to symmetry

reasons same as dFy/dy), which can be related to the required

magnetomotive force (MMF) generated by the EMs, i.e., the

amount of current fed to the EMs to actively control the mover

position. It should be mentioned that the remaining radial

robustness is not considered in the Pareto plot; thus, is only

calculated for a set of optimal design candidates in a post-

processing stage.

As expected, a larger CDRLH results in lower payload

capability and xy-stiffnesses, since with increasing CDRLH,

the magnetic flux density strength and consequently the forces

decrease. As can be noted, a maximum CDRLH around 1.5
would be possible, however, in these cases, the axial and
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Fig. 12: Pareto plot of (a) all geometries, which result in a (Fz, Txy)
stability type and (b) remaining designs with minimum relative
payload capacity of Fz,max/Fg = 50 and minimum absolute tilting
stiffness dTy/dθy = −1mNm/°. The color bar corresponds to the
gradient of the unstable xy-force component dFx/dx, which has to
be compensated by the magnetomotive force (MMF) of the EMs.

TABLE I: Optimal MB dimensions highlighted in Fig. 12.

Mover Value Stator Value

rm,ext 65mm rs,ext 50mm
rm,int 36mm rs,int 28mm
hm 5mm hs 21mm
Mag. Direction Down Mag. Direction Up

rotational robustnesses tend to zero, which is not acceptable

for a real MB design. Therefore, the optimization results

are restricted to a range with a minimum relative payload

capability Fz,max/Fg = 50 and a minimum absolute tilting

stiffness dTy/dθy = −1mNm/°. The Pareto plot of the

remaining design points is shown in Fig. 12 (b). There, also

designs with very large gradients dFx/dx with respect the

unstable xy-force component are discarded (N/m instead of

kN/m), since for the subsequent EM design a low MMF

is desired. With these constraints, still a high CDRLH of

around 0.95 can be achieved, which is clearly outperforming

existing commercial products with CDRLH of around 0.6 [4],

especially in the sense that at the same time a ten times higher

payload capability is obtained.

In Tab. I, the mover and stator dimensions of the optimal

design highlighted in Fig. 12 are listed. The corresponding

performance characteristics are given in Tab. II, where for
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Fig. 13: Pareto plot of all geometries, which result in a (Fxy, Txy)
stability type. Advantageously, only one DOF would have to be con-
trolled, however, the achievable CDRLH and especially the payload
capacity are much lower compared to the (Fz, Txy) stability type.
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TABLE II: Calculated performance characteristics of the optimal
geometry highlighted in Fig. 12 for single or multi-turn model coils.

Parameter Ns = Nm = 1 Ns = Nm = 10
h 123.2mm 123.8mm
CDRLH 0.948 0.952
dFx/dx 33.6N/m 33.7N/m
dFz/dz −65.8N/m −66.0N/m
dTy/dθy −1mNm/° −1mNm/°

Ty,max 13.4mNm 13.7mNm
θy,max 18° 18°

xmax 16mm 16mm
Fz,max/Fg 55.8 50.7
Mover Mass mm 0.35 kg 0.35 kg
Payload Cap. 19.1 kg 17.4 kg

Stator

Mover

6DOF Sensor

x-Displacement

z-Displacement

y
m

z
m

x
m

Fig. 14: Test setup showing the essential components, where the
stator can be precisely moved against the fixed mover in x and z-
direction with a positioning stage. The mover is mounted to a 6DOF
sensor (Rokubi of BOTA Systems) which records all forces and
torques applied to the mover with a resolution of 0.15N and 5mNm,
respectively. Stator and mover are realized with a 3D-printed housing
where a large number of small PMs (quality N45) are inserted.

the single and multi-turn coil approach similar results are

obtained. As can be noticed, the optimum external mover

radius rm,ext is larger than the stator radius rs,ext, thus defines

the characteristic dimension to 2 · rm,ext = 130mm. The

absolute levitation height h is around 120mm, while the

mover can be tilted up to 18°, while a maximum radial

displacement of 16mm is allowed until the mover becomes

unstable. Furthermore, the maximum payload Fz,max which

can be carried by the mover is almost 20 kg, resulting in a

strongly reduced passive levitation height.

For the sake of completeness, the same Pareto optimization

was also performed for all geometries which result in a

(Fxy, Txy) stability type, since in this case only the z-position

would have to be controlled actively. However, as shown in

Fig. 13, lower CDRLHs (max. 0.6) and especially much lower

payload capacities (even below the lower limit used for the

(Fz, Txy) stability type) are obtained.

VII. EXPERIMENTAL VERIFICATION

In order to validate the analytic model, a test setup to

measure the forces and torques acting on the mover is built as

illustrated in Fig. 14. In contrast to the final MB setup, where

the mover is freely levitating above the fixed stator, in the

test setup, the stator can be precisely moved against the fixed

mover in x- and z-direction by means of a positioning stage.

There, the mover is mounted to a 6DOF sensor which records

all forces and torques applied to the mover.

In the test setup, both PMs are realized with a large number

of small rectangular PMs, which are stacked together in a 3D-

printed housing having the same dimensions listed in Tab. I.

Hence, due to the free space between the individual rectangular

PMs, the magnetic volume of the stator and mover PM is

reduced (see Fig. 15 (a)), meaning that lower effective forces

and torques are obtained. The PM volume reduction can be

thought of as a proportional reduction of magnetic dipoles in a

given mover/stator volume, thus, based on Ampère’s law given

in (1), this results in an equivalent reduction of the stator’s and

mover’s coercive field strength Hci,s and Hci,m if a constant

mover/stator volume is assumed. The reduction factors are

determined from the volume ratio of the discrete PMs and the

originally calculated ring-shaped PM volume, which for the

built stator and mover leads to 78% and 74%, respectively.

The magnetic force scales with Hci,s · Hci,m and, therefore,

reduces to 58% with respect to the optimal ring-shaped PMs.

However, since the gravitational force of the mover does not

scale with the same factor as the magnetic force - it scales

proportionally with the mover PM volume - the scaling laws

derived in App. A cannot be applied, which means that the

new MB characteristics have to be recalculated by using the

reduced Hci,s and Hci,m in the analytical model.

The corresponding calculated and measured axial forces for

a radially centered mover position, i.e., x = y = 0, with

respect to the distance h are shown in Fig. 15 (c). As can be

noted, the axial force monotonically increases with reduced
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Fig. 15: (a) Top view of the schematic realization of the PMs
of Fig. 14, where discrete magnets instead of ring-shaped PMs are
utilized. (b) Comparison of the calculated and measured torque for a
tilted but radially centered mover at the levitation height h = 88mm,
where the tilting stiffness and the rotational robustness can be verified.
(c) Comparison of the calculated and measured axial force for a
radially centered mover which is only axially displaced; thus, the
levitation point (LP) and the maximum payload capacity can be
determined. (d) Calculation error between single and multi-turn
model.
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height h, which means that depending on the additional

payload, all levitation heights are at least (Fz) stable. The axial

force derived with the multi-turn model lies always in between

the forces calculated with the single and double-turn model;

for the given setup, even at low distances h, the calculation

error is below 6% as shown in Fig. 15 (d). Furthermore, all

models provide a good correspondence with the performed

measurements.

Even though the mover is not actively levitated in the test

setup yet, the levitation point can be found by comparing the

axial force with the mover’s gravitational force and would

result in h = 88mm. In addition, the axial force stiffness

at the levitation point is obtained from the force gradient

dFz/dz = −94N/m, which based on (14) directly gives

the radial stiffness of dFx/dx = 47N/m. The axial force

measurement also permits to determine the maximum payload

capacity of 6.3 kg at the minimum achievable levitation height

of h = 12mm, which is limited by the 3D-printed housing

thicknesses of the stator and mover (h is intended as the

distance between the PMs’ surfaces to be consistent with the

definition used in this paper).

At the levitation point h = 88mm, the realized MB with

radially centered mover is also characterized with respect to

its rotational stiffness, where the torque Ty is calculated and

measured for different tilting angles θy as depicted in Fig. 15

(b). Again, the results obtained with the single and multi-turn

models are in good agreement with the experimental measure-

ments. However, at large tilting angles, a small difference can

be noted due to the limited accuracy of the setup regarding

tilting angle adjustments. Therefore, also FEM simulations

have been performed to verify the results of the analytical

model. Furthermore, the maximum tilting angle before the

system without payload becomes unstable, i.e., the gradient

becomes positive, is determined as θy,max = 27° where a max-

imum stabilizing torque of |Ty,min| = 72.8mNm is achieved.

The tilting stiffness is again found by the torque gradient at

θy → 0 which leads to dTy/dθy = −2.5mNm/°. Therefore,

the performed measurements show that the designed MB

achieves the stability type (Fz, Txy) for the shown levitation

point. Moreover, the same stability type has been observed by

performing simulations for each levitation height/payload.

VIII. CONCLUSIONS

In this paper, a simple analytical method to calculate the

3D magnetic forces and torques between permanent magnets

(PMs) is presented. The PMs are first substituted by model

coils based on the Ampèrian model, and with a discretization

of the Biot-Savart law, the 3D field is calculated. This simply

allows calculating all forces and torques of any arbitrary

geometry based on the Lorentz law. Furthermore, with the

displacement method, stiffnesses in all six degrees of freedom

(DOFs) can be determined.

Taking an axially symmetric magnetic bearing (MB) as

an example, it is shown that depending on the selected MB

dimensions different stability types are obtained, and ring-

shaped PMs are outperforming disc-shaped PMs concern-

ing achievable stiffnesses by several orders of magnitudes,

however, lead to a slightly reduced axial levitation height.

With the performed Pareto optimization it is shown that a

characteristic dimension related levitation height (CDRLH) of

around 1.5 can be achieved, however, if a minimum payload

capacity of 50 times the mover weight and a tilting stiffness of

dTy/dθy = 1mNm/° are considered, the maximum CDRLH

reduces to around 1, which is still almost a factor of two higher

as obtained with commercially available products, even with

a more stringent constraint on the payload capacity.

Furthermore, the forces calculated with the proposed analyt-

ical approach are verified on a 6DOF test setup, which reveals

a good matching between calculations and experimental results

independent of the chosen number of model windings.

As a final consideration, one can extend the proposed

analytic 3D method to any kind of ironless MB, e.g., systems

with radially arranged PMs or systems featuring Halbach

arrays since in the magnetic flux density and force calculation

process no assumptions on the shape or any symmetries

are made. In fact, as long as one is able to substitute the

PMs in the system with current-carrying coils, arranged such

that their magnetic flux density distribution is replicated, the

presented discretization and summation process for calculating

the magnetic forces can be conducted. With a further deep

investigation, in combination with the method of images, the

forces in simple MBs employing iron core structures could

be calculated. However, in this case, one also has to consider

the effort for building the model, its time performance, and

precision compared to the commonly used FEM simulations.

APPENDIX A

SCALING LAWS

With the performed Pareto optimization in Sec. VI, the

optimal dimensions of the PMs were found, which for the

defined design space resulted in a calculated maximum levi-

tation height of 123.8mm and payload capacity of 17.4 kg. If

at a later stage, the demanded specifications, e.g., concerning

the desired maximum levitation height or the payload would

change, one would not have to perform the complete opti-

mization routine again. Instead, the scaling laws derived in

this section could be used, which directly allow determining

the new PM dimensions, such that the new requirements

concerning levitation height, forces, torques, or stiffnesses can

be met.

A. Proportionality Factors

For the derivation of the scaling laws, proportionality factors

(k1 and k2) between different design variables (stator radius rs,
mover radius rm, and levitation coordinate zh, i.e., the vertical

distance between the stator’s and mover’s center of mass)

are introduced such that the resulting flux density, forces and

torques can be expressed with a reduced number of variables

rm = k1rs (15)

zh = k2rs (16)

|r| ∝ rs. (17)

Furthermore, the equivalent ampèrian current of a PM,

given in (1), is directly proportional to the height of the

corresponding PM

Ii ∝ hi with i = {s,m}. (18)

Accordingly, the magnetic flux density |B| derived in (4)

can be related to the defined quantities as

|B| ∝
Is · rs · rs

r3s
∝

hs

rs
, (19)

which means that the magnetic flux density is directly propor-

tional to the stator thickness and inversely proportional to the

stator radius.

Furthermore, from (5) and (19), it follows that the force

|Ftot| is directly proportional to the thickness of both PMs

and to the proportionality constant k1

|Ftot| ∝
Im · rm · hs

rs
∝ hmhsk1, (20)
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meaning that also the ratio between the PM radii has an

impact on the force magnitude.

The torque |Ttot| can be characterized by combining (6)

and (20) as

|Ttot| ∝ rmhmhsk1 = hmhsrsk
2
1. (21)

Finally, the mover’s gravitational force Fg, which is of

fundamental importance to determine the levitation height h,

is determined as

Fg ∝ hmr
2
m = hmr

2
s k

2
1, (22)

which is proportional to the volume of the mover.

B. Scaling laws

Based on the derived proportionalities between forces,

torques and MB size, the dimensions of the already character-

ized MB can be scaled. There, it is assumed that the original

mover radius rm and stator radius rs are scaled by the same

factor a1 to the new mover radius r∗m and stator radius r∗s as

r∗m = a1rm (23)

r∗s = a1rs. (24)

In the general case, where the PMs are ring shaped magnets,

both mover’s and stator’s radii have to be scaled by the same

factor a1.

The scaling of the PM heights hm and hs are found under

the condition that the axial force, given by |Ftot|, scales

with the same factor as the gravitational force Fg. Hence,

the original stator height hs scales with a21, whereas for the

original mover height hm an arbitrary scaling factor a2 can be

selected

h∗

s = a21hs (25)

h∗

m = a2hm. (26)

Consequently, applying these scaling factors a1 and a2 to

the force and torque equations given in (20), (21), and (22),

it follows for the new forces |Ftot|
∗

, F ∗

g and torque |Ttot|
∗

|Ftot|
∗

= a21a2 |Ftot| (27)

|Ttot|
∗

= a31a2 |Ttot| (28)

F ∗

g = a21a2Fg. (29)

It can be noted that both force equations scale with the

same factor a21a2, whereas the torque even scales with a31a2.

Furthermore, based on (16), the original levitation coordinate

zh scales as

z∗h = a1zh, (30)

thus, the new levitation height h∗ is found as

h∗ = z∗h −
h∗

s

2
−

h∗

m

2
= a1zh −

a21hs

2
−

a2hm

2
(31)

Finally, the force and torque gradients are obtained by

deriving (27) and (28) with respect to a small displacement

or rotation as

grad(F )
∗

= a1a2 · grad(F ) (32)

grad(T )
∗

= a31a2 · grad(T ). (33)

As a simple and useful conclusion of these scaling laws,

it can be stated that: if only the mover height hm is scaled

TABLE III: Dimensions of the scaled optimal geometry of Tab. I
resulting from the scaling laws.

Mover Value Stator Value

r∗m,ext 81.3mm r∗s,ext 62.5mm
r∗m,int 45mm r∗s,int 35mm
h∗

m 9.2mm h∗

s 32.8mm
Mag. Direction Down Mag. Direction Up

TABLE IV: Characteristics of the scaled optimal geometry of Tab. II
obtained applying the scaling laws for the case Ns = Nm = 10. The
correctness of the values has been verified with simulations.

Parameter Value Factor Value

h∗ 150mm a1 1.25

CDRLH∗ 0.923
(dFx/dx)

∗ 77.6N/m a1a2 2.3

(dFz/dz)
∗ −151.9N/m a1a2 2.3

(dTy/dθy)
∗ −3.6mNm/° a31a2 3.6

T ∗

y,max 48.2mNm a31a2 3.6

θ∗y,max 18°

x∗

max 20mm a1 1.25

F ∗

z,max/F
∗

g 55.8
Mover Mass m∗

m 1 kg a21a2 2.88

Payload Cap.∗ 50 kg

with the factor a2, all forces, torques, and corresponding gra-

dients are also scaling linearly with a2, whereas the levitation

coordinate zh remains the same since it only depends on the

factor a1. Further, if a1 is increased, the forces and torques

even scale with a21 and a31, respectively.

C. Example

In the following, to demonstrate the effectiveness of the

scaling laws, the optimized MB designed in Sec. VI should

be scaled to a new MB which achieves a maximum levitation

height of h = 150mm and features a payload capacity of

50 kg.

Based on (31) and (29), the two scaling factors are directly

found as a1 = 1.25 and a2 = 1.84. Tab. III shows the dimen-

sions of the scaled PMs, and in Tab. IV the characteristics of

the scaled MB are reported.
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