

Solid-State Transformers — The Slope of Enlightenment

Johann W. Kolar et al.

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Dec. 6, 2022

Solid-State Transformers — The Slope of Enlightenment

Johann W. Kolar & Jonas E. Huber

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Dec. 6, 2022

Gartner Hype Cycle (1)

Graphical Representation of Technology Perception / Acceptance / Maturity

- Peak of Inflated Expectations
 Trough of Disillusionment
 Slope of Enlightenment
 → Early Publicity / Success Stories
 → Implementations Fail to Deliver
 → Benefits Start to Crystallize

Gartner Hype Cycle (2)

Graphical Representation of Technology Perception / Acceptance / Maturity

- Peak of Inflated Expectations
 → Early Publicity / Success Stories
 → Implementations Fail to Deliver
 → Benefits Start to Crystallize

ETH zürich

Outline

- ► Introduction
- SST Motivation / Concepts
 Full-Scale Demonstrator Systems
 Performance Evaluation

► Outlook

Acknowledgement

P. Czyz T. Guillod G. Ortiz D. Rothmund

Introduction

Classical Transformer SST Motivation in Traction & Smart Grids — SST Topologies

Classical Transformer — **History**

- **1830** Henry/Faraday
- Ganz Company (Hungary) 1878
- 1880 Ferranti ___

.....

Europe

- 1885

USA

- **1882 Gaulard & Gibbs**
- **1884** Blathy/Zipernowski/Deri

- \rightarrow Property of Induction
- \rightarrow Toroidal Transformer (AC Incandescent Syst.)
- → Early Transformer
 → Linear Shape XFMR (1884, 2kV, 40km)
 → Toroidal XFMR (Inverse Type)

Patented Sept. 21, 1886.

W. STANLEY, Jr. INDUCTION COIL.

Stanley & (Westinghouse)

→ Easy Manufact. XFMR (1st Full AC Distr. Syst.)

No. 349,611.

ETH zürich

Classical Transformer — **Basics**

Characteristics

- Voltage Transf. Ratio Fixed
- Current Transf. Ratio
- Active Power Transf.
- React. Power Transf.
- Frequency Ratio

Fixed Fixed $(P_1 \approx P_2)$ Fixed $(Q_1 \approx Q_2)$ Fixed $(f_1=f_2)$

Weaknesses

- Voltage Drop Under Load
 Not Directly Controllable
 Losses at No Load

- Large Weight/Volume @ Low Frequency
- Advantages
- Inexpensive

- Highly Robust / Reliable
 Highly Efficient
 Passive Short Circuit Current Limitation

IEEE Power Electronics Society SOUTHERN POWER ELECTRONICS CONFERENCE

SST Motivation

Next Generation Traction Vehicles

Classical Locomotives

- Catenary Voltage
 Frequency
 Power Level
 15kV or 25kV
 16²/₃Hz or 50Hz
 1...10MW typ.

Transformer

90...95% (Due to Restr. Vol., 99% typ. for Distr. Transf.) 6A/mm² (2A/mm² typ. Distribution Transformer) 2...4 kg/kVA

15 kV 1ph

AC nc DC

М

1 kV 3ph

16.7 Hz

0

IEEE Power Electronics Society SOUTHERN POWER ELECTRONICS CONFERENCE

Classical Transformer — Scaling Law

 $A_{Core} = \frac{1}{\sqrt{2}\pi} \frac{U_1}{\hat{B}_{max}} \frac{1}{f} \frac{1}{N_1}$

 $A_{Wdg} = \frac{2I_1}{k_W J_{rms}} N_1$

- Magnetic Core Cross Section
- Winding Window

• Construction Volume

$$A_{Core}A_{Wdg} = \frac{\sqrt{2}}{\pi} \frac{P_t}{k_W J_{rms} \hat{B}_{max} f} \propto L^4$$

 $\uparrow \uparrow \uparrow$

 P_{t} Rated Power k_{W} Window Utilization Factor B_{max} ... Flux Density Amplitude J_{rms} ... Winding Current Density f Frequency

■ Low Frequency → Large Weight / Volume
 ■ Trade-off → Volume vs. Efficiency

ETH zürich

Next Generation Locomotives (1)

- Distributed Propulsion System \rightarrow Volume Reduction (Decreases Efficiency) Trends (Requires Higher Volume)

 - Energy Efficient Rail Vehicles \rightarrow Loss Reduction Red. of Mech. Stress on Track \rightarrow Mass Reduction

frequency transformer (LFT).

AC-DC conversion with medium frequency transformer (MFT).

DC

- Replace LF Transformer with MF Transformer & Power Electronics Interface \rightarrow "Solid-State Transformer"
- Medium-Frequency Allows Reduction of Volume & Losses

Next Generation Locomotives (2)

Loss Distribution of Conventional & Next Generation Locomotives

• Medium Frequency Provides Degree of Freedom \rightarrow Reduction of Volume & Losses (!)

1889 — **Dobrovolski** → **3-Phase Transformer** 1891 — 1st Complete AC System (Generator - XFRM - Transmission - XFRM - Motor & Lamps, 40Hz, 25kV, 200kW, 175km)

IEEE Power Electronics Society SOUTHERN POWER ELECTRONICS CONFERENCE

Classical Transformer

— Magnetic Core Material — Winding Material

Silicon Steel / Nanocrystalline / Amorphous Copper or Aluminium Mineral Oil or Dry-Type

- Operating Frequency— Operating Voltage

— Insulation/Cooling

50/60Hz (El. Grid, Traction) 10kV or 20 kV (6...35kV) 400V

- 1 MVA 12kV/400V @ 2600kg
- 0.5% / 1% Losses @ No / Rated Load Not Directly Controllable
- Sensitivity to Harmonics & DC Offsets

Vacuum Cast Coil Dry-Type **Distribution Transformer**

ETH zürich

Future Ren. Electric Energy Delivery & Management (FREEDM) Syst.

- Huang et al. (2008)
- SST as Enabling Technology for the "Energy Internet"
- Full Control of the Power Flow
- Integr. of DER (Distr. Energy Res.)
- Integr. of DES (Distr. E-Storage) + Intellig. Loads
 Protects Power Syst. From Load Disturbances
- Protects Load from Power Syst. Disturbances
- Enables Distrib. Intellig. through COMM
 Ensure Stability & Opt. Operation
- etc.
- etc.

IFM = Intelliq. Fault Management

• Bidirectional Flow of Power & Information / High Bandw. Comm. \rightarrow Distrib. / Local Autonomous Control

Trade-Off — **Controllability vs. Efficiency**

- Lower Efficiency of SST Compared to "Grid-Type" Passive Transformer
- Medium Freq. \rightarrow Higher Transf. Efficiency only Partly Compensates Converter Stage Losses

ETH zürich

Classification of SST Topologies (1)

Degree of Power
 Conversion Partitioning

Degree of Phase-Modularity

• 3-Dimensional Topology Selection Space

Classification of SST Topologies (2)

Series/Parallel Cells

- Very (!) Large Number of Possible Topologies

- Partitioning of Power Conversion
 → Splitting of 3ph. System into Individual Phases
 Splitting of Medium Operating Voltage into Lower Partial Voltages
 → Matrix & DC-Link Topologies
 → Phase Modularity
 → Multi-Level/Cell Approaches

Full-Scale Industrial SSTs for Future Traction Applications

1-Φ AC-DC Conversion _____ DC/DC Conversion

ETH zürich

1.2 MVA 1- Φ AC/DC Power Electronic Transformer

IEEE Power Electronics Society SOUTHERN POWER ELECTRONICS CONFERENCE

DCX — "DC Transformer"

- $f_S \approx \text{Resonant Frequency} \Rightarrow$ "Unity Gain" $(U_2/U_1 = N_2/N_1)$ Fixed Voltage Transfer Ratio Independent of Transferred Power (!) Power Flow Level & Direction Self-Adjusting No Controllability / No Need for Control ZVS/ZCS of All Devices

Relative Frequency $\frac{\omega}{\omega_0}$

2.0

1.5

 $\frac{\sqrt{\frac{L}{C}}}{R_L}$

Q=1

Q=2

Q = 5

Q = -

1.2 MVA 1- Φ AC/DC Power Electronic Transformer

- **Cascaded H-Bridges 9 Cells**
- Resonant LLC "DC-Transformer" DC/DC Converter Stages

Same Overall Volume as a Conventional System
 Future Development Targets Half Volume

1-Φ AC/DC SST — Modular Multi-Level Converter Approach

- Highly Modular / Scalable
- Single Transformer w/ Full Isolation Voltage Rating Redundancy of Lifetime-Critical Power Semiconductors High Semiconductor & Cell Voltage Control Effort

SIEMENS - Marquardt/Glinka (2003)

Power Elect Laboratory

Power Electronic Systems

DC Traction _____ Applications _____

Future DC-Railway DC/DC-SST Application (1)

- Increase in Regional & Freight Traffic \rightarrow Higher Power Demands
- 9kV DC-Bus Extension of Current 1.5kV | 3kV SNCF DC System (1000 mm²)

■ DC/DC SSTs Instead of New AC/DC Substations → Lower Realization Effort | Higher Eff.

Potential 9kV DC-Interface to Renewable Energy / Energy Storage / HVDC Lines etc.

Future DC-Railway DC/DC-SST Application (2)

- Increase in Regional & Freight Traffic \rightarrow Higher Power Demands
- 9kV DC-Bus Extension of Current 1.5kV | 3kV SNCF DC System (1000 mm²)

■ Future Elimination of 1.5kV Overhead Lines → Onboard 9kV/1.5kV DC/DC Conversion

Future DC-Railway DC/DC-SST Application (3)

- **3.3kV / 750A SiC MOSFETs** | 400kVA 1:1 Water-Cooled Nanocryst. Core Oil-Tank MFT | f_{sw} = 15kHz 2-Stage ISOP Demonstrator System 600kW | 3.6kV/1.8kV DC/DC Conversion | $\rho \approx 0.6$ kW/dm³

- **DCX-Type ISOP Converter Stages**
- Natural Voltage & Current Sharing Experimentally Confirmed
- Interleaving 4x 15kHz = 60kHz Output Voltage Ripple

Smart Grid SSTs Applications —— 3-Φ AC-AC Conversion ——

Isolated-Back-End ISOP 3-Φ AC/AC SST Topology

- **ETH Zurich MEGA-Link Project**
- Input Series Output Parallel CHBs ISOP Topology

• DC-Transformer DC/DC Conversion Stages

ETH zürich

Medium Voltage SiC Power MOSFETs / IGBTs

■ High Voltage Unipolar (!) Devices → Excellent Sw. Performance / High Power Density

(ge)

SiC-Enabled Solid-State Power Substation (1)

- 10 kV SiC-Enabled 1MVA @ f_{sw} = 20 kHz
 MV Δ-Connection (13.8kV_{LL}, 4 Modules in Series)
 LV Y-Connection (265V, All Modules in Parallel)

- Fully Phase-Modular ISOP Topology
- Indirect Matrix Converter Modules f1 = f2
 97% Efficiency @ Full Load | 1/3rd Weight | 50% Volume Reduction (Comp. to 60 Hz)

SiC-Enabled Solid-State Power Substation (2)

- 10 kV SiC-Enabled 1MVA @ f_{sw} = 20 kHz
 MV Δ-Connection (13.8kV_{LL}, 4 Modules in Series)
 LV Y-Connection (265V, All Modules in Parallel)

- Fully Phase-Modular ISOP Topology
- Indirect Matrix Converter Modules f1 = f2
 97% Efficiency @ Full Load | 1/3rd Weight | 50% Volume Reduction (Comp. to 60 Hz)

ETH zürich

2-Level Mobile Utility Support 3- Φ AC/AC SST

- Mobile Utility Support Equipment (MUSE-SST) Placed in Mobile Container
 MV and LV DC-Links Facilitate Integration of Renewables / Energy Storage
- **100kW** | 4.16kV 7.2kV_{pc} 800V_{pc} 480V

- **10kV Gen-3 Extra High Voltage (XHV)** & 1.2kV SiC MOSFET Half-Bridge Modules
- Thermosyphon Air Cooling | MV Power Block 0.2 kW/dm³ | 0.6 kW/kg | $\eta \approx 95.5\%$ @ $f_{sw} = 10$ kHz / 3.5 kV_{DC} / 35 kW

SST Development Cycles

Development Cycles Reaching Over Decades — Matched to "Product" Life Cycle

ETH zürich

---- 3- ϕ AC-DC Conversion ----

SELTA

Source: Ch. Zhu, 2021

3-Φ **13.2kV** / **400kW SST-Based EV** Charger

• 15 kW Cells (≈ 0.5 kW/dm³) / All-SiC Realization | 100+ kHz MFT (≈ 8.5 kW/dm³ w/o Bushing!)

3-Φ **13.2kV** / **400kW SST-Based EV** Charger

3000 kgs Weight | 3100 x 1300 x 2100 mm Outer Dimensions
 Power Density → 0.05kW/dm³ (System) | ≈ 0.5 kW/dm³ (Cells) | ≈ 8.5 kW/dm³ (MFT)

Source:

3-Φ 6.6kV / 350kW SST-Based Multi-Port EV Charger

- **3x7 = 21 Cells** | 5kHz 1.7kV Si-IGBT AC/DC Stage | 50kHz 1.7kV SiC 1050V/400V DC/DC Converter Matrix Switch Output for 21x 17kW \rightarrow 1x 350kW Charging Port Config. & Cascaded Cell Balancing
- **Forced Air Cooling**

Power Density → 0.09kW/dm³ (System) | ≈ 0.18 kW/dm³ (SST/Cells incl. Isol.)
 -40% Footprint / -70% Weight vs. LFT-Based Solution / 83% Lower Transf. Volume

3-Φ 6.6kV / 350kW SST-Based Multi-Port EV Charger

- 3x7 = 21 Cells | 5kHz 1.7kV Si-IGBT AC/DC Stage | 50kHz 1.7kV SiC 1050V/400V DC/DC Converter
 Matrix Switch Output for 21x 17kW → 1x 350kW Charging Port Config. & Cascaded Cell Balancing
- **Forced Air Cooling**

Source: **HITACHI**

- Power Density → 0.09kW/dm³ (System) | ≈ 0.18 kW/dm³ (SST/Cells incl. Isol.)
 -40% Footprint / -70% Weight vs. LFT-Based Solution / ≈80% Lower Transf. Volume

Modularization Penalty

- Highly (!) Simplified Consideration
- Power P Processed in Sphere with Radius R₀
 Modularization Assuming const. P/V [W/in³]
 Const. Isolation / Overhead Distance d_{iso}

- High Number of Modules \rightarrow Massive Reduction of Overall Power Density
- Add. Overhead \rightarrow Input & Output Filters | Protection Equipment | Mech. Assembly | Cabinets etc.

ETH zürich

Isolation Coordination

- Decisive Voltage Class (DVC) of MV Side Circuitry DVC-D (> 1 kV AC or > 1.5 kV DC)
 "Safe Isolation" Towards Circuits w/ Other DVC / RI Required for Direct Contact
 BI Towards Touchable Grounded Parts Sufficient / BI or FI Between Circuits w/ same DVC

- Simplified Example Only
- Applicable Standards Must be Considered in Full Detail!

Norme Suisse Norma Svizzera

EN IEC 62477-2

Safety requirements for power electronic converter systems and equipment - Part 2: Power electronic converters from 1 000 V AC or 1 500 V DC up to 36 kV AC or 54 kV DC

> IEEE Power Electronics Society SOUTHERN POWER ELECTRONICS CONFERENCE

ETH zürich

Remark System-Level Perspective

- **2-Stage Transformer Approach**
- **Isolation for Nominal Voltage (PD Tests)** 1st Stage
- **Isolation for BIL** 2nd Stage
- More Compact Realiz. of 1st Stage MFTs, e.g., w/o Bushings
 BI Requirement for MV Electronics to Housing Remains

- **Design DOF / Separate Optimization**
- Especially Interesting for Lower Voltage / Power \rightarrow Reduced Modularization Penalty

Datacenter Power Supply <u>High-Power</u> 3-Φ AC-DC SST Systems

Hyper-Scale Datacenters

- **MV** (kV) \rightarrow Power-Supplies-on-Chip (0.9V) Power Conversion
- Short Innovation Cycles
 Modularity / Scalability

Server-Farms up to **450 MW** 99.99999%/<30s/a \$1.0 Mio./Outage

> Since 2006 Running Costs > Initial Costs

Source: Facebook

1. Higher Availability 2. Higher Efficiency
 3. Higher Power Density
 4. Lower Costs

IEEE Power Electronics Society SOUTHERN POWER ELECTRONICS CONFERENCE

ETH zürich

Comparison of AC and DC Power Distribution

• Centralized PFC Rectifier Stage / DC Distribution — Minor Efficiency Gain (!) / Adv. for Integr. of RES & FCs

Power Electronic Systems Laboratory

Dry-Type LFT Technology & SiC PFC Rectifier

- **400kVA EcoDry™ High-Efficiency Transformer** Vacuum Cast Coils → No Fire Hazard
- Amorphous Metal Core \rightarrow Low No-Load Losses
- High Overvoltage / Overload Capability

1200V SiC MOSFETs

- Utilizing Proven LV SiC MOSFETs in AC/DC Stage → η_{AC/DC} = 99+ % Efficiency
 Full Functionality Reactive Power Gen. | Bidir. Power Flow | Scalability to Higher MVAC-Levels
- No DC Fault Current Limit (!)

IEEE Power Electronics Society SOUTHERN POWER ELECTRONICS CONFERENCE

3-Φ 12-Pulse / Multi-Pulse Rectifier

No Explicit PFC Stage (!) \rightarrow Passive Realization of PFC with Phase-Shifting Transformer / No Inductors

× 1e4

- Low Complexity | High Robustness | Long Lifetime
- 18-Pulse, 24-Pulse For High Power Levels
- 4 kW/dm³ Rectifier Stage / Air Cooling

- Unidirectional
- **No Active Output Voltage Control (Tap-Changer)** Remaining Current Distortion / Reactive Power Consumption

Comparative Evaluation — Efficiency

■ ± 400V DC Power Distribution — Fuel Cell Back-Up Power / PV Integration etc.

• 12-Pulse + Active Filter \rightarrow Highest Efficiency & Robustness @ Reduced Functionality

Comparative Evaluation — Efficiency & Power Density

- Industrial AC/DC SST → NO Efficiency / Volume Advantage Compared to LFT + SiC AC/DC Conv.
- **Efficiency of Industrial Prototypes** $\eta \approx 98\%$
- Full System Power Density $\rho \approx 0.05 \dots 0.2 \text{ kW/dm}^3$

- Dry-Type LFT-Based Systems → Voltage Scalability & Robustness
- **12-Pulse Rect. & Act. Filter** \rightarrow Low Complexity @ Reduced Functionality

LV Low-Power SMPS Efficiency / Power Density 1981 — 2021

- **1981** Large Volume Line-Frequ. Isolation/Voltage Step-Down | Diode Rectifier | Low Eff. Linear Stabilization
- 2021 PFC Rectifier Front-End | High-Frequ. Isolated DC/DC Converter

• Power Density AND Eff. Improvement | Line-Frequ. \rightarrow High-Frequ. Conv. & Linear \rightarrow Sw.-Mode Regulation

Remark HVDC Converter Station (1)

■ 2 x 1 GW / ± 320 kV HVDC Link btw. France & Spain

Convertier station Bitos. France Convertier station Some ther station Some there station

- 1 Power modules (IGBT)
- 2 Converter reactors
- 3 Power modules cooling system
- 4 Control and protection room
- 5 Auxiliary power supplies
- 6 Starpoint reactors and insertion reactor
- 7 Power transformers

■ Isolation Clearances (!) Largely Determine Space Requirement | Low LFT Volume Contribution (!)

IEEE Power Electronics Society SOUTHERN POWER ELECTRONICS CONFERENCE

Source: SIEMENS

■ 2 x 1 GW / ± 320 kV HVDC Link btw. France & Spain

Isolation Clearances (!) Largely Determine Space Requirement | Low LFT Volume Contribution (!)

IEEE Power Electronics Society SOUTHERN POWER ELECTRONICS CONFERENCE

Status Quo — Traction & Grid AC/DC SSTs

Traction \rightarrow Clear Improvements in Efficiency / Power Density > 10 Years Ago

• Grid \rightarrow Recently Built 1st Full Industrial Demonstrators w/o Efficiency / Power Density Advantage

3- Φ Grid AC/DC SSTs

Full-Scale Industry Demonstrators Complying with All Relevant Regulations & Standards

Grid AC/DC SST Challenges (1)

■ Massive Reduction of Power Density from Cell to Full System → Modularization Penalty

■ Future 10+kV SiC Devices → Lower Number of Cells for Given Medium-Voltage Level

Grid AC/DC SST Challenges (2)

- PFC Functionality on MV-Side → Modularization Penalty & Add. Protection
- Target Efficiency of 98% → 2% Loss Budget for 4 Conversion Stages vs. 2 Stages for LFT-Based Concept

- Modularization Penalty Larger Cabinets / Heavier Weight etc.
- MV-Side Power Electronics Overhead Protection, Connectors, Access for Maintenance etc.

10kV SiC Power-Cell w/ Integrated Output Inductor

- 250kW Half-Bridge Power-Cell (HB-PEEB)
 10kV/240A SiC MOSFET Modules (4200kW/dm³) | 6kV DC-Link
 $\eta \approx 99.3\% @ f_{sw} = 10 \text{ kHz}$ for D = 0.5 Power Circulation

 $\rho \approx 12 \text{ kW/dm}^3$

- Multi-Layer PCB DC-Bus | Gate Driver for 100V/ns Sw. Speed | PCB Rogowski Coil Sw. Curr. Sensing / Protection
 Local Controller & Voltage/Current Sensors | Wireless Aux. Supply | Curr. Loop GD supply | Temp. Sensing etc.

Next.-Gen. SSTs — Improvement Potential

- 10 kV SiC and/or MMC Topology Might Facilitate to Overcome the Power Density Barrier
 AC/DC Efficiencies >98% Remain Difficult to Attain
- **Future Research Focus on NEW Aspects** 3-Ф Grid AC/DC SSTs SST DC-Side Fault Protection & Ride-Through 100 **Grid-Side Overvoltage Protection Power Density Barrier \$\$\$** Learning Curve CPES — Etc. 99 Delta (2021) Est. Extrapol **Modular SST** LFT + SiC (Stacks Onl AC-DC Efficiency (%) Ć 98 **Traction 1-** Φ **AC/DC SSTs** 98 SMA ETHZ (2019) 3 MVA LFT + Si 25 kW / 10-kV SiC ABB (2012) AC-DC Efficiency (%) 97 96 ABB (2012) Alstom (2003) 1.2 MW Traction 96 94 0 Conventional 95 92 Alstom (2003) 1.5 MW Traction 90 └ 0.1 94 0.2 0.3 0.4 0.5 10⁰ 10^{-2} 10⁻¹ 10¹ (!) Gravimetric Power Density (kW/kg) Power Density (kW/dm^3)

Full-Scale Demonstrators Complying with All Relevant Regulations Mandatory for Realistic Assessment

Grid AC/DC SST Challenges (3)

- **SST Fault Behavior & Stresses (Line-to-Line, Line-to-Gnd, Short Circuits, etc.)**
- Fault Handling Schemes / Fault Ride-Through / Grid Code Compliance

Protection Scheme Needs to Consider: Selectivity / Sensitivity / Speed / Safety / Reliability

Outlook — SST Technology Learning Curve

- Learning Rate → Cost Reduction for Each Doubling of the Cumulative Production / Accumulated Experience
 Used for Prediction of Future Costs of a Technology (e.g. PV or Wind "Grid Parity") → Long Term Strategies

- **Typ. Empirical Learning Rates of 15...25%** \rightarrow Dramatic Cost Reduction Over Longer Timespan
- 15 k\$ Budget for 1MVA SST MV Power Electronics & MFT \approx 10 k\$/1MVA Power Converter \rightarrow 10 \$/kW (!)

■ MV Cellular DC Power Distribution — 6kV DC/DC SST for Size & Weight Reduction

Source: General Dynamics

- "Energy Magazine" as Extension of Electric Power System / Individual Load Power Conditioning
 Bidirectional Power Flow for Advanced Weapon Load Demand
 Extreme Energy and Power Density Requirements

SOUTHERN POWER

Research Vectors

More Compact Realization Modularity / Hatchability /Transportability SiC Medium-Voltage PEBBs Separation of Safety Protection & Funct. Isol.

ETH zürich

■ 53'000'000 Tons of Electronic Waste Produced Worldwide in 2019 → 74'000'000 Tons in 2030

■ Increasingly Complex Constructions → No Repair or Recycling

● Growing Global E-Waste Streams → Upcoming Regulations

- "Linear" Economy / Take-Make-Dispose \rightarrow "Circular" Economy / Perpetual Flow of Resources Resources Returned into the Product Cycle at the End of Use

Decoupling of Economic Growth & Use of Resources (!)

Thank you!

Source: P. Aylward

Further Reading — https://pes.ee.ethz.ch/publications.html

IEEE Power Electronics Society SOUTHERN POWER ELECTRONICS CONFERENCE

