Power Electronic Systems Laboratory

Contactless Gripping – Paving the Way Towards Flexible Micromanipulation

Dr. Marcel Schuck, MBA ETH Zurich Pioneer Fellow Power Electronic Systems Laboratory CEO & co-founder No-Touch Robotics GmbH IeCAT 2020, November 26, 2020

ETH zürich

Introduction of the Power Electronic Systems Laboratory (PES)

- 21 Nobel Prizes 413 Professors 6240 T&R Staff
- 2 Campuses 136 Labs 35% Int. Students 110 Nationalities 36 Languages
- 150th Anniv. in 2005

Departments of ETH Zurich

ARCH	Architecture		
BAUG	Civil, Environmental and Geomatics Eng.		
BIOL	Biology		
BSSE	Biosystems		
CHAB	Chemistry and Applied Biosciences		
ERDW	Earth Sciences		
GESS	Humanities, Social and Political Sciences		
HEST	Health Sciences, Technology		
INFK	Computer Science		
ITET	Information Technology and Electrical Eng.		
MATH	Mathematics		
MATL	Materials Science		
MAVT	Mechanical and Process Engineering		
MTEC	Management, Technology and Economy		
PHYS	Physics		
USYS	Environmental Systems Sciences		

PES Research Scope

Cross-Departmental

Mechanical Eng., e.g. Turbomachinery, Robotics **Microsystems Medical Systems Economics / Society**

- Airborne Wind Turbines
- Micro-Scale Energy Systems
- Wearable Power
- Exoskeletons / Artificial Muscles
 Hybrid Systems
 Pulsed Power

ETH zürich

Actuators / EL. Machines

Innovation in Mechatronics and Electric Drives

Key Components Available Today

Extremely Wide Application Areas

ETH zürich

5/23

Industry Trend: High Rotational Speed for High Power Density

1'000'000 r/min, 100 W World Record Drive System

- µm-Scale PCB Drilling
- Dental Technology
- Laser Measurement Technology
- Turbo-Compressor Systems
- Air-to-Power
- Artificial Muscles
- Mega Gravity Science

Source: Zwyssig et. al., Megaspeed Drive Systems: Pushing Beyond 1 Million r/min, IEEE Transactions on Mechatronics 2009

World Record Magnetic Bearing with 500'000 r/min

Source: Baumgartner and Kolar, Multivariable State Feedback Control of a 500 000r/min Self-Bearing Permanent-Magnet Motor, IEEE Transactions on Mechatronics 2015

Source: nasa.gov

Power Electronic Systems Laboratory

High Complexity of Active Levitation Systems

- Active Magnetic Levitation
 - Sensing Difficult for Small Rotors
 - High Bandwidth / Complex Control 🔨 🔨 👖 🗗 💈 🗸
- Passive Magnetic Levitation
 - High Eddy Current Losses

- Passive Acoustic Levitation
 - Particle < Wavelength
 - Acoustic Pressure Field
 - Ultrasound Transducers
 - + Passively Stable
 - + Low Losses
- Low Load Capacity

Source: https://www.instructables.com/id/Acoustic-Tractor-Beam/

Transducer Arrangements and Modelling

Individual Excitation of Transducer Arrays

- Manipulation of all Degrees of Freedom Possible
- Achievable Force/Torque Dependent on Transducer Arrangement

Transducer Piston Model

9/23

Source: Marzo et. al., Holographic acoustic elements for manipulation of levitated objects, Nature Communications 2015

. _

Source: Marzo et. al., Holographic acoustic elements for manipulation of levitated objects, Nature Communications 2015

- Twin Trap Provides Sufficient Load Capacity and High Radial Stiffness
 - Spatial Rotation of Trap

High Speed Rotation in Acoustic Traps

Power Electronic Converter System

ETH zürich

Twin Trap

- Approx. Constant Suspension Forces by Non-Linear Phase Shift
- Stability over Wide Speed Range

Highest Rotational Speed of 216'000 r/min

Robotic Grippers Lag Miniaturization Trend

The Information

"What Apple Learned From Automation: Humans Are Better"

Contact-based gripping increasingly unsuitable for small objects

Acoustic Robotic Gripper

Handling of Components

- Without Mechanical Contact
- Damage and Contamination Free
- Handling of Small Objects and Liquids
- Multiple Object Geometries

Processes Automation

 Automated Insertion of Components Required for Pick & Place Processes

Picking Process: Double and Single-Sided Gripper

"Automated Insertion of Objects Into an Acoustic Robotic Gripper" **Marc Röthlisberger**, Marcel Schuck, Laurenz Kulmer and Johann W. Kolar

Single-Sided Picking from Reflective Surfaces

Maximum attainable pressure for each point in space

$$M(x, y, z) = \sum_{j} \left| V_{\text{RMS}} P_0 \left(\frac{J_0(kr\sin\theta_{d,j})}{d_{d,j}} + R \frac{J_0(kr\sin\theta_{r,j})}{d_{r,j}} \right) \right|$$

17/23

Single-Sided Picking from Reflective Surfaces

(c)

ETH zürich

18/23

Application Example: Liquid Handling

GRIP OBJECTS WITHOUT TOUCHING THEM

Automate processes that had to be performed manually before.

SAVE TIME AND MONEY

The same gripper can be used for a variety of object shapes.

INCREASE QUALITY AND YIELD

Damage and contamination-free handling of precious components.

IMPROVE ENVIRONMENTAL FOOTPRINT Reduced production rejects.

Application Example: Cell Manipulation

- Manual cell sorting is slow and unreliable
- Results are difficult to replicate
- Precision too low
- Contamination and damage
- \rightarrow High cost and low yield

Application Example: Cell Manipulation

Power Ultrasound Electronics Transducer-Array

Cell Suspension

21/23

Glass Slide

Transducer

es Slido

ETH zürich

Plattform Technology With a Wide Range of Applications

No-Touch Robotics	Micromechanics & Watchmaking	Semiconductor Industry	Life Sciences
Automate manual processes	✓	-Ua.	
Contamination and damage free	✓	✓	✓
Variable shape components	✓		
Fluid handling/dispensing		✓	✓
Improved quality & yield	✓	✓	✓
No particle generation		\checkmark	✓
Isolation of hazardous substances		✓	✓

