

GENERATION SiC/GaN 3-Φ Variable Speed Drive Systems

Johann W. Kolar et al. Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Nov. 11, 2024

Source:SIEMENS

... "How to Handle a Double-Edged Sword"?

Johann W. Kolar | Jonas Huber

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Nov. 11, 2024

<u>Variable Speed Motor Drive (VSD) Systems</u>

- Industry Automation / Robotics
 Material Machining / Processing Drilling, Milling, etc.
 Compressors / Pumps / Fans
 Transportation

- etc., etc.

.... Everywhere !

• 60...70 % of All Electric Energy Used in Industry Converted by VSDs

Variable Speed Drives — State-of-the-Art 1/2

- DC-Link Based AC/DC/AC OR Matrix-Type AC/AC Converters
- Battery OR Fuel-Cell Supply OR Common DC-Bus Concepts

• 45% of World's Electricity Used for Motors in Buildings & Industrial Applications

Variable Speed Drives — State-of-the-Art 2/2

- Mains Interface | 3-⊕ PWM Inverter | Cable | Motor → All Separated
 PWM Output → Conducted & Radiated EMI / Reflections @ Motor Terminals / Bearing Currents
- Large Installation Space / \$\$\$
 Shielded Motor Cables / Filters / \$\$\$
 Special Types of Bearings / Grounding / \$\$\$
 Complicated / Expert Installation / \$\$\$

High Performance @ High Level of Complexity & High Costs (!)

SiC Low R_{DS(on)} High-Voltage Devices

- Higher Critical E-Field of SiC → Thinner Drift Layer
 Higher Maximum Junction Temperature T_{j,max}

• Massive Reduction of Relative On-Resistance \rightarrow High Blocking Voltage Unipolar (!) Devices

Si vs. SiC

Si-IGBT / Diode → Const. On-State Voltage, Turn-Off Tail Current & Diode Reverse Recovery Current
 SiC-MOSFET → Loss Reduction @ Part Load BUT Higher R_{th}

• Space Saving of >30% on Module Level (!)

Si vs. SiC Conduction Behavior

Si-IGBT → Const. On-State Voltage Drop / Rel. Low Switching Speed
 SiC-MOSFETs → Resistive On-State Behavior / Factor 10 Higher Sw. Speed

• SiC MOSFETS Facilitate Higher Part Load Efficiency

ETH zürich

Si vs. SiC Switching Behavior

Si-IGBT → Const. On-State Voltage Drop / Rel. Low Switching Speed
 SiC-MOSFETs → Resistive On-State Behavior / Factor 10 Higher Sw. Speed

High di/dt & dv/dt \rightarrow Challenges in Packaging / EMI / Motor Insulation / Bearing Currents

- High di/dt Switching Transition
- **Commutation Loop Inductance L**_s Allowed L_s Directly Related to Switching Time $t_s \rightarrow$

Advanced Packaging & Parallel Interleaving for Partitioning of Large Currents (Z-Matching)

8/43

Surge Voltage Reflections & CM Currents

- High dv/dt / Short Rise Times of Inverter DM & CM Output Voltage Pulses
 Reflections @ Motor Terminals → High Insulation Stress
 CM Leakage Current → Radiated Emissions & Bearing Currents

Motor Surge Voltage | CM Leakage Current | Bearing Current

Motor Bearing Currents

- Switching Frequency CM Inverter Output Voltage → Motor Shaft Voltage
 <u>Electrical Discharge Machining ("EDM")</u> in the Bearing

→ Cond. Grease / Ceram. Bearings / Shaft Grndg Brushes / dv/dt-Filter OR Full-Sinewave Filters

Conducted & Radiated EMI Emissions

- Higher dv/dt → Factor 1
 Higher Switching Frequencies → Factor 1
 EMI Envelope Shifted to Higher Frequencies \rightarrow Factor 10
- \rightarrow Factor 10

• Higher Influence of Filter Component Parasitics & Couplings \rightarrow Advanced Design

CRER

Inverter Output Filters

dv/dt-Filters — Full-Sinewave Filters

Power Electronic Systems Laboratory

—— dv/dt-Limitation ——

Passive | Hybrid | Active dv/dt-Limitation

- **Passive** Damped LC-Filter $f_c > f_s$ Hybrid Undamped LC-Filter & Multi-Step Sw. Transition Active Gate-Drive Based Shaping of Sw. Transients

• Connection to DC-Minus & CM Inductor \rightarrow Limit CM Curr. Spikes / EMI / Bearing Currents

Comparison of dv/dt-Filtering Techniques

Multi-Bridge-Leg dv/dt-Limitation

2-Step Switching / Resonant Transition (Hybrid dv/dt-Filter)

DC

Source: J. Ertl et al. PCIM Europe 2018

■ Staggered Sw. Parallel Bridge-Legs → Non-Resonant Multi-Step Transition

Source: J. Ertl et al. PCIM Europe 2017

• Adv. for High Power / High Output Curr. Syst. Employing Parallel Bridge-Legs & Local Comm. Caps

—— Triangular Current Mode (TCM) —— ZVS Operation

- Purely Sinusoidal Output Voltage (DM & CM Filtering) High Sw. Frequency & TCM → Low Filter Inductor Volume ZVS of Inverter Bridge-Legs

- Only 33% Increase of Transistor Conduction Losses Compared to CCM (!)
 Very Wide Switching Frequency Variation

Frequency-Bounded TCM \rightarrow **B-TCM**

■ Very Wide Switching Frequency Variation of TCM → B-TCM

• $TCM \rightarrow B$ -TCM — 10% Further Increase of Transistor Conduction Losses

- Continuous Current Mode (CCM) Operation ——

3-\oplus 650V GaN Inverter System (1)

Source: YASKAWA

- Transphorm 650 V Normally-On GaN HEMT/30V Si-MOSFET Cascode 6-in-1 Power Module
 Sinewave LC Output Filter Corner Frequency f_c= 34 kHz (f_{sw}= 100 kHz)
- No Freewheeling Diodes

\rightarrow Comparison to Si-IGBT Drive Systems

3-\oplus 650V GaN Inverter System (2)

Source: YASKAWA

Comparison of GaN Inverter w/ LC-Filter to Si-IGBT System (No Filter, f_{sw}=15 kHz)
 Measurement of Inverter Stage & Overall Drive Losses @ 60 Hz

→ 2% Higher Efficiency of GaN System Despite LC-Filter (Saving in Motor Losses) !

Power Electronic Systems Laboratory

Multi-Level / Multi-Cell Converters & Modularity

Power Electronic Systems Laboratory 225

3-Level T-Type Inverter (1)

- Higher Number of Bridge-Leg Output Voltage Levels / Lower DM & CM Voltage Steps Neutral Point Clamped | Flying Capacitor | T-Type Bridge-Leg Topologies

Motor Line-to-Line Voltage

- More Complicated Bridge-Leg Structure On-State-Losses of Series-Connected Switches

3-Level T-Type Inverter (2)

- 3-Level T-Type Inverter 3-Level Phase Voltage / 5-Level Line-to-Line Voltage Lower DM & CM Voltage Steps Compared to 2-Level Converter

- *Full-Sinewave DC-Link Referenced LC-Filter Elimination of DM & CM Sw. Frequ. Voltage Harmonics*
- T-Type Topology Ensures Low Conduction Losses Adv. Application of M-BDS's (!)

3-Level T-Type Inverter (3)

- 3-Level T-Type Inverter 3-Level Phase Voltage / 5-Level Line-to-Line Voltage Lower DM & CM Voltage Steps Compared to 2-Level Converter

- *Full-Sinewave DC-Link Referenced LC-Filter Elimination of DM & CM Sw. Frequ. Voltage Harmonics*
- T-Type Topology Ensures Low Conduction Losses Adv. Application of M-BDS's (!)

SiC/GaN Figure-of-Merit

- Figure-of-Merit (FOM) Quantifies Conduction & Switching Properties
 FOM Identifies Max. Achievable Efficiency @ Given Sw. Frequ.

- Advantage of LV over HV Power Semiconductors →
 Advantage of Multi-Level over 2-Level Converter Topologies

3-Level Flying Capacitor (FC) Converter

3-Level Flying Cap. (FC) Converter \rightarrow No Connection to DC-Midpoint Involves All Switches in Voltage Generation \rightarrow Eff. Doubles Device Sw. Frequency

• FC Voltage Balancing Possible also for DC Output (!)

4.8MHz GaN Half-Bridge Phase Module

- Combination of Series & Parallel Interleaving
- 600 V GaN Power Semiconductors, f_{sw}= 800 kHz
 Volume of ≈180 cm³ (incl. Control etc.)
 H₂0 Cooling Through Baseplate

• Operation @ f_{out} = 100 kHz / $f_{sw,eff}$ = 4.8 MHz, 10 kW, U_{dc} = 800 V

Power Electronic Systems Laboratory

_____ Motor-Integrated _____ Inverter Systems

Multi-Axis Drive Systems

- Common DC-Bus Single AC/DC Converter / Smaller Cabinet Motor Integration of DC/AC Stage Massive Saving in Cabling Effort / Simplified Installation

- \bullet
- Facilitates DC-Bus Energy Buffer Direct Energy Exchange @ DC-Bus / Higher Efficiency / Unidir. Front-End \bullet

Motor Integrated Inverter Stage

- Comparative Evaluation of ML-Inverter Concepts
- 2x 2⁻Level Stacked 650V GaN | 3-Level 650V GaN | 7-Level 200V Si Inverter Design for 800V DC-Link / 7.5kW / 99% Efficiency / 3s 3x T_N Overload

- ۲
- 7-Level FC Inverter Large PCB Area Requirement & High Complexity 2x 2-Level Inverter No Flying Capacitors & CM Cancellation / Low L_{cM} Volume 3-Level FC Inverter Best Overall Trade-Off (Complexity / PCB Area / Volume of Full-Sinewave Filter etc.)

Power Electronic Systems Laboratory

Motivation

- General / Wide Applicability
- Adaption to Load-Dependent Battery | Fuel Cell Supply Voltage
 Operation in Wide Output Voltage / Wide Motor Speed Range

- *Full-Sinewave Filtered Motor Supply Voltage* LC Output Filter Inductor Advantageously Utilized as Buck-Boost-Inductor

Buck-Boost «Y-Inverter»

Generation of AC-Voltages Using Unipolar Bridge-Legs

- Switch-Mode Operation of Buck OR Boost Stage → Quasi Single-Stage Energy Conversion (!)
 3-Φ Continuous Sinusoidal Output / Low EMI → No Shielded Cables / No Motor Insul. Stress

3-O Current Source Inverter (CSI) Topology

- **Y-Inverter** \rightarrow Phase Modules w/Buck-Stage | Current Link | Boost-Stage 3- \oplus CSI \rightarrow Buck-Stage V \rightarrow I Converter | Current DC-Link DC/AC-Stage

- Single Inductive Component
- Positive DC-Side Voltage for Both Directions of Power Flow \rightarrow Future Utilization of M-BDSs

3-O Buck-Boost CSI Modulation

- "Synergetic" Control of Buck-Stage & CSI Stage 6-Pulse-Shaping of DC Current by Buck-Stage → Allows Clamping of One CSI-Phase

• Switching of Only 2 of 3 Phase Legs $(2/3 \text{ Mode}) \rightarrow$ Significant Reduction of Sw. Losses

Power Electronic Systems Laboratory

Derivation of 3- Φ **Current Source AC/AC Converter (1)**

Derivation Based on Bidir. Buck-Boost Current Source Inverter (CSI) \rightarrow Buck-Boost PFC Rectifier (CSR)

Lower # of Ind. Components Compared to Boost-Buck Rectifier Approach

- AC/DC Buck Stage Distributes DC-Link Current to Mains Phases Sinusoidal Inp. Current
 Synergetic Control/Modulation of Rectifier Stage & DC/DC Stage for Min. Sw. Losses

31/43_

Power Electronic Systems Laboratory

225

DC-Side Coupling of Buck-Boost Current DC-Link PFC Rectifier & Inverter — AC/DC/AC
 Full-Sinewave Filtering @ Input & Output w/ Single Magnetic Component

- Bipolar Blocking / Unidir. Switches | Unidir. DC-Link Current Sufficient for Bidir. Power Conversion
 Modulation-Based Inversion of DC-Link Voltage Polarity → Inv. of Power Flow Direction

32/43___

Power Electronic Systems Laboratory

255

3-Φ Current Source AC/AC Converter

• *Relation to High-Power Thyristor-Based Medium-Voltage Synchr. Machine Variable Speed Drives*

Remark Self Reverse-Blocking M-BDS-Concept (1)

- **Bidir.** Curr. DC-Link Converters Unidir. I_{dc} & Bipolar U_{dc} OR **Bidir.** I_{dc} & Unipolar U_{dc}
- HV Switch + HV Diode
 M-BDS
- HV Diode Characteristic / High Cond. Losses Ohmic Cond. Char. BUT 2 External Gate Signals / 2 Gate Drivers Ohmic Cond. Char. BUT High Local Complexity (Sensing)

• SRB-MBDS Quasi-Ohmic Cond. Char. (Cascode w/ LV Si Schottky Diode) & 1 External Gate

Remark Self Reverse-Blocking M-BDS-Concept (2)

- **Bidir.** Curr. DC-Link Converters Unidir. I_{dc} & Bipolar U_{dc} OR Bidir. I_{dc} & Unipolar U_{dc}
- HV Switch + HV Diode
- M-BDS
- "Self-Switching"

HV Diode Characteristic / High Cond. Losses Ohmic Cond. Char. BUT 2 External Gate Signals / 2 Gate Drivers Ohmic Cond. Char. BUT High Local Complexity (Sensing)

• SRB-MBDS Quasi-Ohmic Cond. Char. (Cascode w/LV Si Schottky Diode) & 1 External Gate

Buck-Boost

Boost-Buck

DUA ITY

- Current DC-Link Topology
- Application of M-BDSs
- Complex 4-Step Commutation OR SRB-MBDSs Low Filter Volume

- Standard Bridge-Legs
- Low-Complexity Commutation Defined Semiconductor Voltage Stress
- Facilitates DC-Link Energy Storage

• High Input / Output Filter Volume

36/43____

- Challenging Overvoltage Protection Limited Control Dynamics

37 / 43____

DUA ITY

- Current DC-Link Topology
- Application of M-BDSs Complex 4-Step Commutation Low Filter Volume

- Voltage DC-Link Topology
- Standard Bridge-Legs
- Low-Complexity Commutation Defined Semiconductor Voltage Stress
- Facilitates DC-Link Energy Storage

All-600 V-GaN AC-AC VSDs / 1.4 kW, 200 V L-L / Full EMI Filter (Grid & Motor) / 97% Nominal Eff.

$3-\Phi AC/AC$ Matrix Converter $\begin{cases} 100 \\ 000 \\ 011 \end{cases}$

Indirect & *Direct* 3- Φ AC/AC Matrix Converter

- Constant 3-Φ Instantaneous Power Flow → No Low-Frequ. DC-Link Power Pulsation Buffer Requirement (!)
 Indirect AC/DC—DC/AC OR Direct AC/AC Power Conversion → IMC OR DMC
 DMC → Switch Matrix w/ Bipolar Voltage Blocking & Current Carrying Devices

• Input-Side Cap. / Output-Side Motor Ind. \rightarrow Operation Limited to Buck-Type (Step-Down) Conversion

• A

3-OAC/AC*Matrix***ConverterComparison**

- Indirect Matrix Converter (IMC)
- GaN M-BDS AC/DC Front-End ZCS Commutation of AC/DC Stage @ i_{DC}=0 No 4-Step Commutation

Direct Matrix Converter (CMC)

ā

 \overline{h}

 \overline{c}

Å

 $a i_{a}$

4-Step Commutation
Exclusive Use of GaN M-BDSs

- Higher # of Switches Compared to DMC Lower Cond. Losses @ Low Output Voltage Thermally Critical @ $f_{out} \rightarrow 0$

• Thermally Critical @ $f_{out} \approx f_{in}$

OP

3-O Current DC-Link vs. Matrix AC/AC Converter

- Current DC-Link Topology
- Application of M-BDSs | 12 Switches
- 4-Step Commutation
- Buck-Boost Functionality
- Low Filter Volume

• Challenging Overvoltage Protection

- Direct Matrix Converter
- Application of M-BDSs | 9 Switches 4-Step Commutation
- Complex Space Vector Modulation
- Limited to Buck-Operation (!)

Challenging Overvoltage Protection

Power Electronic Systems Laboratory

Summary

- Future Need for "SWISS Knife"-Type Inverter Systems
- Wide Input / Output Voltage Range
- Continuous / Sinusoidal Output Voltage
- Electromagnetically "Quiet" No Shielded Cables
- "Plug & Play" / Non-Expert Installation
 SMART Motors / Cognitive VSDs
- On-Line Monitoring / Industry 4.0
- Enabling Technologies
- SiC / GaN
- Advanced (Multi-Level) Topologies
 "Synergetic" Control
- Monolithic Bidirectional GaN
- Integration of Switches / Gate Drives / Sensing / Monitoring
- Adv. Modeling / Simulation / Optimization
- Machine Learning / AI

System Level \rightarrow Distributed DC Bus Systems, Integration of Storage, etc.

Monolithic 3D-Integration

Source: Panasonic ISSCC 2014

Isolated

dividing

DBM gate drive

transmitter chip

- M-BDS GaN 3x3 Matrix Converter with Drive-By-Microwave (DBM) Technology
- -
- 9 Dual-Gate GaN AC-Switches / 4-Step Commutation DBM Gate Drive Transmitter Chip & Isolating Couplers Ultra Compact $\rightarrow 25 \times 18 \text{ mm}^2$ (600 V, 10 A 5 kW Motor) -

Massive Space Saving Compared to Discrete Realization (!)

Smart Converter Concept

• Utilize High Computing Power & Network Effects in the Cloud \rightarrow "Cognitive" Power Electronics

Source: Dr. R. Sommer SIEMENS

• Sensing & Computing on Component Level | Converter Level | System Level | Application Level

Power Electronic Systems Laboratory

Thank you!

Acknowledgement

M. Antivachis J. Azurza D. Bortis M. Guacci M. Haider M. Kasper J. Kaufmann F. Krismer D. Menzi N. Nain P. Niklaus G. Rohner D. Zhang

