
© 2018 IEEE

IEEE Transactions on Power Electronics, Vol. 33, No. 11, pp. 9154-9162, November 2018

Inductive Power Transfer Efficiency Limit of a Flat Half-Filled Disc Coil Pair

M. Leibl,
O. Knecht,
J. W. Kolar

Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current 
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new 
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other 
works.



1

Inductive Power Transfer Efficiency Limit of a

Flat Half-Filled Disc Coil Pair
Michael Leibl, Oliver Knecht and Johann W. Kolar

Abstract—The efficiency limit for inductive power transfer
between two flat half-filled disc coils is derived based on a
model for the eddy current losses in the coils and the losses due
to electro-magnetic radiation. Analytic approximations for the
coupling factor of the coils and eddy current losses are proposed
and experimentally verified.

It is shown that the approximative terms allow to express the
maximum efficiency of the coil pair analytically. If the strand
diameter of the coil is sufficiently small the efficiency depends
only on strand diameter, diameter of the coils and the gap
between the coils - but not on the operating frequency. Therefore,
increasing the frequency does not result in higher efficiency but
allows to reduce the coil thickness.

NOMENCLATURE

≈ approximately equal

δ Skin depth.

η12 Primary coil to secondary coil efficiency.

γ Effective magnetic field length per coil width.

Îr Current amplitude per strand.

ω Coil current angular frequency.

σ Electrical conductivity.

≃ asymptotically equal

ϕ Coil current phase angle.

c0 Speed of light in vacuum.

d Coil diameter.

Fr Skin effect function for round wire.

g Gap between coils.

Gr Proximity effect function for round wire.

h Coil height.

Hsrms Spatial RMS value of magnetic field.

I Coil RMS current.

k Coupling coefficient.

kcu Winding filling factor.

L Coil inductance.

lh Effective magnetic field length.

M Magnetic dipole moment.

N Coil number of turns.

Pohm Coil ohmic loss.

Prad Coil dipole radiation loss.

P ′
r Dissipated power per unit length per strand.

P12 Power transfer from primary to secondary coil.

Q Coil quality factor.

R Coil resistance.

Rdc Coil DC resistance.

Rohm Coil ohmic resistance.

R′
r,dc Strand DC resistance per unit length.

Rrad Coil dipole radiation resistance.

w Coil width.

I. INTRODUCTION

The losses of an unshielded pair of inductive power transfer

(IPT) coils can be divided into two groups. First, there are

the ohmic losses of the current flowing in the coils and the

eddy currents induced by the magnetic field. Second, the coil

pair represents a magnetic dipole, which is radiating energy

in the form of electro-magnetic waves. Together these loss

mechanisms limit the efficiency of an IPT system. Previous

work in the field provides an expression for the coil pair

efficiency limit [1], [2], [3], relying on two key parameters,

i.e. quality factor and coupling coefficient which have to be

determined numerically by a finite element method (FEM)

simulation.

This work derives analytic expressions to calculate the

maximum coil pair efficiency for flat half-filled disc coils. The

intention is to provide the reader with an easy-to-use model

in order to evaluate if IPT could be a possible solution for a

problem at hand and if very high operating frequencies [4], [5]

could increase the coil pair efficiency. The presented approach

can not eliminate a numeric multi-objective optimization [6],

[7] at a final stage of the design process, since the expressions

cover only the case of a pair of magnetically unshielded (no

core losses) flat half-filled coaxially aligned disc coils. How-

ever, the simple structure of the analytic expressions provides

valuable insight on the way different geometric parameters

affect the coil pair efficiency.

In Section II the expression for the power transfer between

two coupled coils is provided and applied to the case of a pair

of half-filled disc coils. Models for ohmic (including eddy

current) and radiation losses are derived and experimentally

verified in Section III, which finally lead to the efficiency

limit presented in Section IV. The result is discussed and

conclusions are drawn in Section V.

II. INDUCTIVE POWER TRANSFER

Assuming a pair of two coils as shown in Fig. 1. Each

coil can be represented by an equivalent circuit comprising a

resistance, an inductance and a voltage source equalling the

voltage induced by the other coil. The induced voltage in one

coil is proportional to the time derivative of the current in

the other coil. The proportionality factor is called the mutual

inductance Lm. For sinusoidal quantities the time derivative is

represented by jω, resulting in the induced voltages 1 shown

in the equivalent circuit of Fig. 1. The active power transferred

from the primary coil (index 1) to the secondary coil (index 2)

1Upper-case letters indicate RMS values. Complex phasor quantities are
marked with underline, e.q. the phasor I

1
= I1ejϕ1 represents the current

i1(t) =
√

2I1 cos(ωt + ϕ1).
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Fig. 1. Two coupled coils and their equivalent circuit.
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Fig. 2. Pair of two magnetically coupled flat coaxial half-filled disc coils
with dimensions. The total amp turns NI of each coil are assumed to be
homogeneously distributed over the coil cross section.

equals the active power consumed by the equivalent voltage

source jωLmI2 on the primary side,

P12 = ℜ{jωLmI2I
∗
1} = ωLmI1I2 sin(ϕ1 − ϕ2). (1)

The mutual inductance can be determined from

Lm = k
√

L1L2 (2)

with the self inductances L1, L2 and the coupling coefficient

k of the coil pair. For the case of an infinitely flat (h → 0),

half-filled (inner diameter equals half the outer diameter) disc

coil as shown in Fig. 2, the self inductance is obtained from

a FEM simulation as

L ≈ 0.76µ0dN
2. (3)

The coupling coefficient for the situation in Fig. 2 is also

calculated using a FEM simulation and can be approximated

with less than 3 % error by the empirically found curve fit

k ≈ 1
(

1 + 3.2
(

g
d

)2
)

(

1 + 7 g
d

)

. (4)

The comparison of the curve fit and a measurement of the

coupling coefficient with the FEM simulation is shown in

Fig. 3, indicating very good agreement of measurement and
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Fig. 3. Coupling coefficient of two coaxially aligned infinitely flat half-filled
disc coils as function of gap to diameter ratio according to (4) compared with
a FEM simulation and a measurement.

fit. The measurement has been obtained on a coil pair with

d = 10 cm, h = 0.8mm and N1 = N2 = 31 using 60×71 µm
litz wire. The measured self inductance of a coil is 89 µH,

which agrees well with the calculated value of 92 µH according

to (3).

Due to the good accuracy, the given approximations for self-

and mutual inductance are used throughout the rest of this

work. Except for FEM simulations only a relatively complex

semi-analytic approach [8] is available to calculate the exact

values.

III. AC RESISTANCE

A. Ohmic Losses

There are two parts of the ohmic losses in the conductors of

the coil, commonly referred to as skin- and proximity effect.

For a round conductor the power dissipated per unit length is

P ′
r = R′

r,dc(FrÎ
2
r +GrĤ

2), (5)

with its DC resistance per unit length R′
r,dc, the current

amplitude Îr in the conductor, the external magnetic field

amplitude Ĥ it is exposed to, and the frequency dependent

skin- and proximity effect functions for round conductors Fr

and Gr as provided in [9].

In a winding consisting of multiple round conductors, which

may be part of a litz wire or simply the turns of one solid

round wire, the magnetic field is generally not homogeneous.

However, since the losses are proportional to the square of the

magnetic field, the spatial RMS value of the magnetic field [9]

within the winding volume V

Ĥsrms =

√

1

V

∫

V

Ĥ2dV (6)
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Fig. 4. Infinitely long (z direction) winding with flat rectangular profile.

can be used to describe the total ohmic losses of the winding

as

Pohm = NrlwR
′
r,dc(FrÎ

2
r +GrĤ

2
srms), (7)

with the total number of round conductors Nr contained in

the winding, the mean winding length lw and the spatial RMS

value of the magnetic field amplitude Ĥsrms. It is assumed

that the round wires Nr, i.e. the strands of the winding are

homogeneously distributed within the winding cross section,

therefore no internal proximity effect needs to be considered.

This assumption is true in particular for rectangular profile litz

wires but also a good approximation for tightly wound round

profile litz wires.

The effective magnetic field length

lh =
NÎ

Ĥsrms

, (8)

is introduced to describe the proportionality between winding

amp-turns amplitude NÎ and spatial RMS value of the magnetic

field amplitude Ĥsrms. With (7) and (8) the AC resistance of

the winding due to ohmic losses

Rohm = 2Rdc

(

Fr +Gr

(

Nr

lh

)2
)

, (9)

can be expressed as multiple of the winding DC resistance.

The tricky part is to calculate the effective magnetic field

length lh. An analytic approach is possible for a flat rectan-

gular profile filled with round conductors as shown in Fig. 4.

It is assumed that the number of conductors is high and that

the profile is flat (h ≪ w). Based on Ampère’s law the x-

component of the magnetic field for h → 0

Hx ≃ NI

wh
y (10)

is derived. Using the Biot-Savart law the y-component

Hy ≃ NI

2πw

∫ w

2

−w

2

1

x′ − x
dx′ =

NI

2πw
ln

( w
2
− x

w
2
+ x

)

(11)

follows and the magnetic field spatial RMS value of the flat

rectangular winding profile

Hsrms =

√

√

√

√

1

h

∫ h

2

−h

2

H2
xdy +

1

w

∫ w

2

−w

2

H2
ydx =

NI√
6w

(12)

is obtained. Since (12) is time independent it is valid for

instantaneous, amplitude or RMS values of current I and

spatial RMS magnetic field H . Therefore, the ratio of effective

magnetic field length per width for the flat rectangular profile

asymptotically equals

γ =
lh
w

≃
√
6 (13)
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Fig. 5. 2D FEM simulation of the magnetic field (a) and effective magnetic
field length (cf. (8)) per width (b) of a flat rectangular winding.

for h → 0. This result is verified using a FEM simulation shown

in Fig. 5. As long as the winding is flat ( h
w
< 0.1) the solution

for h → 0 can be used with good accuracy and the proximity

losses are overestimated by less than 30 %.

As shown in Fig. 6 the solution for the magnetic field of

the flat rectangular profile can also be applied with reasonable

accuracy for one of the flat half-filled disc coils as defined in

Fig. 2. For coils with h < 0.05d the error in the proximity

losses is within ±22%.

In case of a pair of coils the magnetic field of one coil

also generates eddy currents in the other coil and vice versa.

Assuming that the two coils are equal and that the coil currents

are orthogonal, as they should be for maximum efficiency (25),

this effect can be taken into account by using the numerically

found equivalent ratio of magnetic field length per winding

width γ according to Fig. 7. However, this effect can be

neglected if the gap between two flat disc coils is larger than

0.3d (cf. limit indicated with dashed line in Fig. 7).

Each of the functions Fr and Gr in (9) can be replaced by an

approximation for the low frequency (LF) range and by another

approximation for the high frequency (HF) range as shown in

the Appendix. For a winding the LF range applies when the

strand diameter dr is less than 32
1

3 δ, and the HF range applies

for strand diameters larger than that. With the asymptotic

approximations for Fr and Gr the asymptotic approximations

for the coil winding AC resistance in the LF range,

Rohm,lf ≃ Rdc

(

1 +
k2cuh

2d2r
4γ2δ4

)

, (14)
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Fig. 7. Equivalent effective magnetic field length per winding width to include
the proximity losses one coil of a pair of coils generates in the other identical
coil.

and the coil winding AC resistance in the HF range,

Rohm,hf ≃ Rdc

(

dr
4δ

+
8k2cuh

2

γ2δdr

)

, (15)

are obtained, with the filling factor kcu and the diameter of

the round conductors dr as defined in Fig. 4, the skin depth

δ = 1√
πµ0σf

and the coil DC resistance

Rdc = N2 3π

kcuσh
. (16)

Since with increasing coil height h, the DC resistance decreases

but the proximity losses increase ((14) and (15)), there is a loss

optimum coil height for the LF range,

hopt,lf ≃
2γδ2

kcudr
, (17)

A: 1 × 2.5mm B: 5 × 0.5mm

C: 175 × 200µm D: 1400 × 100µm E: 300 × 71µm

Fig. 8. Coil samples with d = 20 cm used for the verification of the ohmic
resistance model.
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and also for the HF range,

hopt,hf ≃
γdr

4
√
2kcu

. (18)

With the coil height set to the according optimum the mini-

mum ohmic resistances

Rohm,lf,min ≃ N23π

σ

dr
γδ2

(19)

and

Rohm,hf,min ≃ N23π

σ

2
√
2

γδ
(20)

can be obtained. It is observed that the minimum resistance in

the LF range (19) equals 2Rdc(hopt,lf). Therefore, the optimum

winding height for a given frequency is reached when the AC
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to DC resistance ratio at that frequency equals two. It is further

observed that the minimum resistance in the HF range (20) is

independent of the wire diameter dr. This result is confirmed

by the AC resistance measurements obtained on coil sample

A with a wire diameter of dr = 2.5mm and coil sample

B with a wire diameter of dr = 0.5mm shown in Fig. 8.

Both samples A and B use a single layer construction with

the space between the turns set such that (18) is satisfied. In

order to obtain the same number of turns of N = 10, five wires

are symmetrically paralleled in sample B while only a single

wire is used for sample A. The measurements in Fig. 9 show

that the AC resistances of the two coils in the HF range are

indeed equal and that, since (18) is satisfied, the minimum AC

resistance value for the HF range according to (20) is reached.

Further measurements using litz wire obtained from the coil

samples C-E show a deviation from the predicted value of the

model at the frequency where the proximity losses start to

dominate. This can be explained by the non-ideal twisting of

a real litz wire [10], [11].

B. Radiated Losses

Apart from ohmic losses in the conductors of the coil, the

radiated power also contributes to the losses [4]. One coil

forms a magnetic dipole radiating [12]

Prad =
µ0ω

4

6πc30
M2 (21)

with the RMS magnetic dipole moment

M =
7π

48
d2NI (22)

of a half-filled disc coil. Each coil also forms an electric dipole,

however by keeping the voltage at the coil terminals low, using

a low number of turns or a distributed compensation capacitor,

this can be neglected. Therefore, the equivalent resistance for

the radiated power Prad = RradI
2 of one flat half-filled disc

coil is

Rrad = N2 7
2π5

3325

√

µ0

ε0

(

df

c0

)4

. (23)

IV. EFFICIENCY LIMIT

The efficiency for power transfer from the primary to the

secondary coil (cf. Fig. 1 and (1)) is

η12 = 1− R1I
2
1 +R2I

2
2

R1I21 + ωLmI1I2 sin(ϕ12)
. (24)

For a given power transfer according to (1) there are three

electrical degrees of freedom to maximize this efficiency: the

phase shift between the primary and secondary current, the

ratio between primary and secondary current amplitude and

the frequency.

A. Optimum Phase Shift

Independent of the values of currents, resistances, mutual

inductance and frequency the efficiency (24) is always maxi-

mized for

ϕ1 − ϕ2|opt =
π

2
. (25)
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Fig. 10. Quality factor Q of a flat disc coil with diameter d = 20 cm as
function of the frequency for different strand diameters. The coil height is set
to the optimum value but limited to h < 0.05d.

B. Optimum Current Ratio

From (24) with optimum phase shift the optimum current

ratio

I1
I2

∣

∣

∣

∣

opt

=

√

R2

R1





1

kQ
+

√

1 +

(

1

kQ

)2



 ≃
√

R2

R1

(26)

is determined, which results in the maximum efficiency

η12,opt =
1

(

1
kQ

+

√

1 +
(

1
kQ

)2

)2
≃ 1− 2

kQ
, (27)

with the total quality factor of the coil pair

Q =
√

Q1Q2 =

√

ωL1

R1

ωL2

R2

. (28)

For high values of kQ the asymptotic approximations can be

used.

C. Optimum Frequency

The coil pair efficiency (27) with optimum current ratio

and optimum phase shift is maximized if the product kQ is

maximized. While the coupling coefficient k is not depending

on the frequency the coil quality factor is. In the following it

is assumed that the quality factors of the two coils are equal,

which is the case if their diameters d and strand diameters dr
are equal. Therefore, the optimum frequency is found at

Qmax = max
f

(

2πfL

Rohm(f) +Rrad(f)

)

. (29)

The quality factor as function of the frequency of a flat disc

coil with diameter d = 20 cm is shown in Fig. 10 for different

strand diameters. The coil height is set to minimize the ohmic

resistance according to (17) and (18) but it is limited to h ≤
0.05d. Depending on the strand diameter, three different types

of maxima of the coil quality factor can be identified, which
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can be expressed explicitly using the LF and HF approximations

of the ohmic resistance.

1) Ideal Coil: If the strand diameter is infinitesimal small

(dr → 0), the ohmic part of the coil resistance equals

the DC resistance. However, the radiation resistance Rrad is

proportional to f4 while the reactance ωL is proportional to

f . In this case the maximum quality factor

Qmax,id ≈ 0.76

π

(

54

49

)
1

4
(

kcuσdhmax

√

µ0

ε0

)
3

4

(30)

is reached at

fopt,id =
c0
πd





2533

72kcuσhmax

√

µ0

ε0





1

4

(31)

with the coil height set to its maximum value hmax. This case

marks the theoretical maximum of the quality factor although

in practice it is hardly relevant since it would require strands

with a diameter of less than 1 µm which are twisted ideally.

2) Low Frequency Range: If the strand diameter is not

infinitely small but still less than ≈ 3δ the LF approximation

applies for the ohmic resistance. In this case, with the coil

height set to the optimum value according to (17), the ohmic

resistance is proportional to the frequency (19). Since also the

reactance is proportional to the frequency the quality factor of

the coil in the LF range is constant as long as the radiation

resistance is negligible. This LF plateau of the quality factor

is observed for a strand diameter dr = 10 µm in the example

of Fig. 10. At low frequencies the optimum coil height would

exceed the maximum coil height, set to hmax = 0.05d in this

example, and the plateau is therefore limited by ωL
Rdc

. At high

frequencies the rapidly increasing (∝ f4) radiation resistance

cuts off the plateau. The maximum of the LF plateau quality

factor

Qmax,lf ≈
2 · 0.76 · γd

3πdr
(32)

is reached at the lower frequency end of the plateau

fopt,lf ≈
2γ

πµ0σkcudrh
. (33)

If the coil height h is set to the maximum value hmax

the minimum operating frequency results, but also thinner

coils with higher operating frequency achieve the same Q.

In practice the operating frequency will be determined by

the semiconductors available and the coil height adjusted

accordingly.

3) High Frequency Range: If the strand diameter is larger

than ≈ 3δ the HF approximation for the ohmic resistance

applies and the minimum ohmic resistance of the coil at

optimum height is proportional to
√
f (20). With the reactance

proportional to f , the quality factor increases with
√
f until the

radiation resistance starts to dominate. In the example shown

in Fig. 10 this is observed for a strand diameter dr = 100 µm.

At LF the already discussed plateau is observed which is left at

≈ 4MHz when the skin depth reaches ≈ dr

3
. From that point

on the quality factor increases with
√
f until the HF maximum

of the quality factor

Qmax,hf ≈
0.76

π

(

24

343
γ2σd

√

µ0

ε0

)
3

7

(34)

is reached at

fopt,hf ≈
c0
πd





21136

74σdγ2
√

µ0

ε0





1

7

. (35)

The HF optimum of the quality factor is independent of the

strand diameter, as long as it is larger than ≈ 3δ. In order

to reach this optimum a simple round wire coil is sufficient.

The frequency which is necessary to reach the HF optimum is

relatively high, but decreases with increasing coil diameter.

Which one of the three optima of the quality factor applies

depends on the strand diameter. Although only approximative,

the following boundaries separate the three regions. If the

strand diameter is less than

dr,id−lf ≈ dγ

(

2372

37

)
1

4
(

kcuσh

√

µ0

ε0

)− 3

4

, (36)

the coil can be considered ideal and the optimum frequency

for that case (31) applies. If the strand diameter is larger than

dr,id−lf but less than

dr,lf−hf ≈





79γd4

22310(
√

µ0

ε0
σ)3





1

7

, (37)

the maximum quality factor occurs at the LF optimum fre-

quency (33). And if the strand diameter is larger than dr,lf−hf

the HF optimum (35) applies.

The maximum quality factor and the optimum operating

frequency for a flat disc coil with h < 0.05d as function of

the coil diameter are shown in Fig. 11 for different strand

diameters. For a strand diameter of 71 µm the border between

HF and LF optimum (37) is observed at a coil diameter of

≈ 65 cm.

If the coil diameter is larger than that, the LF plateau marks

the optimum. If the maximum coil height of 0.05d is used, the

optimum operating frequency of a 65 cm coil is only 30 kHz.

For coils with lower diameters than 65 cm, the quality factor

at the LF plateau is lower than at the HF optimum (cf. Fig. 10

with dr = 100 µm). The optimum operating frequency is

defined by (35), resulting in values higher than 10 MHz for this

example, which is typically unacceptable due to the inverter

switching losses. Also coil resonance becomes an issue in

the HF range, requiring measures such as a coil integrated

compensation capacitance.

In practice smaller coils should therefore be equipped with

lower strand diameters, which increases the quality factor at

the LF plateau. Also if the strand diameter is not reduced

it likely makes sense to operate the coil at a suboptimal

LF plateau instead of increasing the switching frequency by

more than two orders of magnitude in order to reach the HF

optimum.
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D. Coil Pair Efficiency Limit with 71 µm Strand Diameter

Depending on coil diameter d and gap g the coil pair

efficiency is shown for 71 µm strand diameter in Fig. 12 for

the case that the coil is operated at the global optimum of the

quality factor (solid line) and for the case it is operated at the

LF plateau (dashed line). For coil diameters larger than 65 cm

the LF plateau constitutes the global optimum. With lower

coil diameters the HF optimum of the quality factor applies.

Operating the coil pair at the LF plateau instead results in lower

efficiency but at the same time in an orders of magnitude lower

operating frequency. E.g. with 20 cm coil diameter at 30 cm

gap the efficiency at the (HF) optimum is 92 % with 40 MHz

operating frequency whereas the efficiency at the LF plateau

is 84 % at 90 kHz.

E. Thermal Power Limit with 71 µm Strand Diameter

Often the required coil pair efficiency is not specified, in-

stead the coil is dimensioned for a temperature limit that must

not be exceeded at maximum output power and maximum gap.

Assuming the typical case of natural convection and radiation

cooling, a coil temperature limit of 100 ◦C and an ambient

temperature of 40 ◦C, the maximum surface loss density must

be limited to < 900W/m2 [13].

For a pair of coils with 71 µm litz wire and only one of

the two surfaces of each coil available for cooling the thermal

output power limit is shown in Fig. 13.

F. Rule of Thumb for the LF Plateau

The operating frequency at the LF plateau depends on the

coil height (17) and can therefore be adjusted to fit the inverter

capabilities. Therefore, the LF plateau is exploited in a wide

range of applications. Two rule of thumb expressions for the

LF plateau shall summarize the analysis. Combining (32), and
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the approximations of (27) and (4) results in the approximative

efficiency of a pair of flat disc coils at the LF plateau of

η ≈ 1− 5dr
d

(

1 + 3.2
(g

d

)2
)

(

1 + 7
g

d

)

. (38)

This approximation is valid if the efficiency is higher than

90 % and the coils are separated by g > 0.3d. The efficiency

limit according to (38) is shown in Fig. 14.

The second rule of thumb expression sets the coil height

according to the optimum value for the LF plateau (17) as

h ≈ 1.5

µ0σkcudrf
(39)

depending on the selected frequency f and strand diameter dr.
The approximate efficiency expression (38) shows that the

only way to increase the efficiency for a given coil diameter

d and gap g is to reduce the strand diameter dr. However,

reducing the strand diameter comes at the price of higher

switching frequency, since according to (39) the optimum

operating frequency of an IPT coil pair at the LF plateau is

inversely proportional to the product of strand diameter and

coil height. This is similar to the optimum operating frequency

of transformers (cf. (21) in [9]) which is inversely proportional

to the product of winding width and strand diameter.

V. CONCLUSION

The efficiency limit for inductive power transfer between

two flat disc coils has been derived, based on analytic approx-

imations for the frequency dependency of the coil resistance

and the coupling coefficient. Both approximations are verified

experimentally.

Based on the conditions for maximum transfer efficiency -

orthogonal coil currents, equal loss sharing between the coils

and maximum quality factor - it is shown that the analytic

approximations can be used to derive two different optima for

the operating frequency that maximize the efficiency.

The first, the low frequency optimum, applies if the coil is

made of thin enough (37) litz wire. In this case the optimum

frequency is reached when the coil’s AC to DC resistance ratio

is 2. This frequency is inversely proportional to the coil height

and can thus be selected to fit the inverter capabilities. At the

low frequency optimum the efficiency only depends on the coil

diameter, the strand diameter and the gap between the coils.

If the strand diameter exceeds a certain value the optimum

frequency occurs at the HF optimum, which is typically in the

range of tens of Megahertz (cf. (37)). This second kind of

optimum is not affected by the strand diameter of the coil

and therefore provides more flexibility for the construction of

the coil, although the required switching frequency is only

determined by the coil diameter and can not be varied by

varying the thickness of the coil as it is the case in the LF

optimum.

In practice the LF optimum is often preferred due to its

lower frequency, which is typically in the tens to hundreds

of Kilohertz range. For the case of two flat disc coils a rule

of thumb is presented to calculate the LF coil pair efficiency

based on strand diameter, coil diameter and gap between the

coils.

APPENDIX

The exact expressions of Fr and Gr are relatively complex

and involve Kelvin functions. For conductor diameters much

smaller or larger than ≈ 3δ the following asymptotic approx-

imations can be used:

Fr ≃
{

1
2
, if dr < 4δ

dr

8δ
, if dr ≥ 4δ

(40)

Gr ≃
{

π2d6

r

128δ4
, if dr < 32

1

3 δ
π2d3

r

4δ
, if dr ≥ 32

1

3 δ
(41)
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