

Novel Isolated 99+% Efficiency 3-Φ PFC Rectifier Concepts

J. W. Kolar* / D. Zhang⁺ / P. Sbabo⁽⁾ / D. Biadene⁽⁾ / P. Mattavelli⁽⁾ / S. Weihe * / J. Huber* / M. Kasper[#] / G. Deboy[#] *ETH Zurich / ⁺Univ. of Toronto / ⁽⁾Univ. of Padova / [#]Infineon Technologies Austria AG

The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTC

Outline

- ► Introduction

- Quasi-Single-Stage Isol. IAF PFC Rectifier
 Single-Stage Isol. IAF PFC Rectifier
 Single-Stage Isol. Full-Matrix-Type PFC Rectifier

Outlook

Future Gigawatt-Scale Datacenters

- "Explosion" of AI « Hyperscale » Datacenters Evolving into « Exascale »
- Gigawatt Power Levels Despite High Power Usage Effectiveness (PUE)

Al is expected to drive more power demand from datacenters

Sources: S&P Global Market Intelligence; 451 Research; S&P Global Commodity Insights

- Plans for 2.5 ... 6 Gigawatt Campuses Co-Located w/ Nuclear Power Plants 🕉 LANCIUM
- Collaboration w/ Utilities Datacenters as Responsive Loads for Balancing Solar & Wind Power

Future ± 400V_{DC} **Power Delivery Architecture**

- Near Term 400V_{AC} or 480V_{AC} or 600V_{AC} Distribution & AC/DC Power Racks incl. Battery Buffer Units
 Mid Term Medium-Voltage AC Distribution & AC/DC Solid-State Transformers (SSTs) Replacing Power Racks

- IT Rack Power Levels Expected to Reach 1MW by 2030
- Medium-Voltage AC Supplied SST Largely Eliminates Distribution Losses / η_d = 98,9% of 400V_{AC} System

3-Φ Quasi-Single-Stage Isolated AC/DC Power Conversion

- Conventional Two-Stage Isolated AC/DC Conversion 3-Ф Boost-Type PFC Rectifier & DC/DC-Stage
- Quasi-Single-Stage Approach Synchronous 3-*Φ* Diode Rectifier & Explicit Parallel-Connected Active Filter

- DC/DC-Stage Supplied w/ Uncontrolled Six-Pulse-Shaped DC-Voltage
- Mains Frequ. Switching of Synchr. 3-D Diode Rectifier Large Chip Areas / Very Low Conduction Losses

3-Φ Quasi-Single-Stage Isolated AC/DC Power Conversion

- Conventional Two-Stage Isolated AC/DC Conversion 3-Ф Boost-Type PFC Rectifier & DC/DC-Stage
- Quasi-Single-Stage Approach Synchronous 3-*Φ* Diode Rectifier & Explicit Parallel-Connected Active Filter

- DC/DC-Stage Supplied w/ Uncontrolled Six-Pulse-Shaped DC-Voltage
- Mains Frequ. Switching of Synchr. 3-D Diode Rectifier Large Chip Areas / Very Low Conduction Losses

3-Φ Quasi-Single-Stage Isolated AC/DC Power Conversion

■ Synchronous 3-*Φ* Diode Rectifier Front-End & Explicit Parallel-Connected Active Filter

■ 3-Ф Diode Rectifier & Low-Complexity Integrated Active Filter (IAF)

- IAF Employs Single HF Sw. Bridge-Leg / Single Inductor / Phase Selector Switches (Monolithic Bidir. GaN Devices)
 Mains Frequ. Switching of Synchr. 3-D Diode Rectifier Large Chip Areas / Very Low Conduction Losses

3-Φ IAF Front-End Operating Behavior

3-Φ Diode Rectifier Front-End Generates "DC" Output Voltage w/ 6x f_{mains} Pulsation Low-Amplitude 3rd Harmonic Current Inj. for Sinusoidal Mains Current Shaping

• Sinusoidal Mains Phase Currents @ Const. Power Load

• Low Switching Transistor T₊ and T₋ Current Stress / Low Switching Losses

3-Φ IAF Rectifier @ Symmetric Mains

- Simulation of 6.25kW Rated Power @ 3-\$\Phi 400V_{AC} Input ±10% & 400V_{DC} Output
 Loss Budget of 0.3% Assigned to IAF Rectifier Stage | 0.5% DC/DC-Stage | 0.2% EMI Filter & Auxiliaries

ZVS / TCM Largely Eliminates Sw. Losses of IAF Bridge-Leg Series Resonant Operation of DC/DC-Stage @ 99.5% Efficiency & 15kW/dm³ Power Density

3-ΦIAFRectifier @UnbalancedMains

- Input Current Control Based on Instantaneous 3-Ф Power Theory
- Slight Phase-Shift of Mains Phase Voltages and Phase Currents

• Instantaneously Const. (!) Power Supplied to DC Output @ Sinusoidal (!) Mains Currents

3-Φ Single-Stage Isolated IAF AC/DC Power Conversion

- Rectifier Function of Front-End Modified to Matrix-Type HF AC Voltage Generation Elimination of DC/DC-Stage Primary-Side Full-Bridge

- *Power Transistors of 3-* Φ *Rectifier Front-End & IAF Injection Bridge-Leg Replaced by AC-Switches*
- High Utilization of the DC/DC-Stage Transformer Maintained Rectangular HF Voltage Operation

3-Φ IAF Matrix-Type Rectifier Modulation & Control

Rectifier Function of Front-End Modified to Matrix-Type HF AC Voltage Generation

• Inversion of IAF Inj. Bridge-Leg Control Signal Dependent on Transformer Voltage Polarity

3-Φ IAF Matrix-Type "Toronto" Rectifier Operation

Simulation of 6.25kW Rated Power System @ $3-\Phi$ 400V_{AC} Input & 400V_{DC} Output

ZVS / TCM Largely Eliminates Sw. Losses of IAF Inj. Bridge-Leg
 High-Efficiency ZVS DAB Operation of Isolation Stage — Very High Overall Efficiency

3-Φ Single-Stage Isolated Matrix-Type AC/DC Conversion

- Integration of Active Filter & HF Transformer Voltage Generation
- Sinus. AC Curr. Shaping & HF Transf. Voltage Gen. Fully Assigned to 3-Φ/1-Φ Matrix-Type Front-End

- Operation Analogous to Dual-Active-Bridge DC/DC Converter
- Sinusoidal Input Currents | HF AC Transformer Voltage | Min. Transf. RMS Curr. @ ZVS of All Power Transistors

3-Φ Matrix-Type AC/DC Converter Demonstrator 1/2

- **Based on Dual Active Bridge (DAB) Concept Opt. Modulation** (t₁...t₄) for Min. Transformer RMS Current & ZVS or ZCS Allows Buck-Boost Operation

• Equivalent Circuit

• Transformer Voltages / Currents

3-Φ Matrix-Type AC/DC Converter Demonstrator 2/2

Outlook — Extension to High Power 1/2

3-Φ Matrix-Type AC/DC Converter w/ Three-Phase Transformer — "i3X-Rectifier" Advantageous for Future 20...50kW AC/DC Power Supply Modules

• Application of Future 1200V Monolithic Bidirectional GaN Power Transistors (MBDSs)

Outlook — Extension to High Power 2/2

■ 3-*Φ* Matrix-Type AC/DC Converter w/ Three-Phase Transformer — i3X-Rectifier

Advantageous for Future 20...50kW AC/DC Power Supply Modules

Use of MBDS GaN Power Transistors — Eliminates Factor of 4 Chip Area Penalty (!)
 Lateral GaN Device Technology — Facilitates Monolithic Integr. of Matrix-Type Switching Stage & Gate Drives

3-Φ AC/DC Solid-State Transformer (SST) 1/2

- **1.2MW Gen.2 Fully-Modular SST w/ HF-Isolation Stages** Lower Raw Material Effort / Lower Impact of Increasing Raw Material Costs

Evaluation Against Dry-Type 50/60Hz-Transformer-Based MVAC-LVDC Interface w/ Comparable Efficiency ۲

3-Φ AC/DC Solid-State Transformer (SST) 2/2

- 1.2MW Gen.2 Fully-Modular SST w/ HF-Isolation Stages Lower Raw Material Effort / Lower Impact of Increasing Raw Material Costs

Significantly Lower SST Carbon Footprint [kg CO_{2,eq}/kW] Compared to 50/60Hz-Transformer-Based Solution

Thank You!

If you Think All This is "Too Much Down to Earth" or "Not Cool Enough", Watch \rightarrow \Box

