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Medium-Frequency Transformer Scaling Laws: 
Derivation, Verif ication, and Critical Analysis

Thomas Guillod and Johann Walter Kolar

Abstract—Medium-frequency transformers (MFTs) are one 
of the fundamental building blocks of modern power electronic 
converters. The usage of increased frequencies leads to improved 
characteristics, i.e., efficiency and power density (volumetric and 
gravimetric) but also to design challenges and constraints. This 
paper reviews the analytical modeling of MFTs. More particularly, 
the mapping between the design space and the performance 
space is analyzed. It is found that wide regions of the design space 
are mapped to a narrow region in the performance space, i.e., 
the optimum is flat and designs with very different parameters 
features similar performances (design space diversity). Scaling 
laws are derived for optimal MFTs operated at different power 
ratings and power densities, which provide a comprehensive and 
general insight on the achievable performances. In a next step, 
the results obtained with the analytical model are compared to 
numerical simulations. It is concluded that the derived scaling laws 
capture qualitatively and quantitatively the behavior of MFTs, but 
should be used with caution for accurate design processes.

Index Terms—Analytical model, medium-frequency trans-
formers, numerical simulations, optimization, power converters, 
power electronics, pareto front, scaling laws.  

Nomenclature

Ac Core cross section.
tc Core limb width.
zc Core depth.
Vc Core volume.
Aw Winding window cross section.
dw Winding window width.
hw Winding window height.
Vw Winding volume.
xcw Ratio between Ac and Aw.
xc Ratio between zc and 2tc.
xw Ratio between hw and dw.
At Exposed area for cooling.
Vbox MFT boxed volume.
mtot MFT mass.
n Number of turns (both windings).
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ρ Volumetric power density.
γ Gravimetric power density.
P MFT active rated power.
S MFT apparent power.
cos (φ) MFT power factor.
f MFT operating frequency.
IRMS MFT RMS current.
VRMS MFT RMS voltage.
Bpk Core peak flux density.
kc / αc / βc Core Steinmetz parameters (empirical).
fc,max Max. frequency for the core.
Bsat Core saturation flux density.
pc Core loss density.
Pc Core losses.
µ0 Vacuum permeability.
kw Winding fill factor.
JRMS Winding RMS current density.
ds Winding strand diameter.
σ Winding copper conductivity.
aw Proximity effect factor.
δ Skin depth .
pw Winding loss density.
Pw Winding losses.
JRMS,max Max. winding RMS current density.
ht Surface convection coefficient.
kt / νt / κt Convection parameters (empirical).
ΔT Temperature rise (with respect to amb.).
ΔTmax Max. allowable temperature rise.
rcw Ratio between Pc and Pw.
rw AC/DC winding resistance ratio.
Pl Total losses (core and windings).
ηpl MFT efficiency (50% load).
ηfl MFT efficiency (100% load).

I. Introduction

LOW-FREQUENCY transformers (LFTs) are widely 
used for voltage transformation/adaptation and galvanic 

isolation in electrical systems [1]. The performance of LFTs 
(efficiency, volumetric power density, and gravimetric power 
density) is subject to fundamental physical limitations due to 
the saturation flux density of the core material, the (thermally) 
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limited current density in the windings, and the cooling 
capabilities [1], [2].

For medium-frequency transformers (MFTs) employed in 
power electronic converters, the operating frequency is not 
defined by the grid frequency and, therefore, can be used as an 
additional degree of freedom, which allows to mitigate (with 
a reduced volt-second product applied to the magnetic core) 
the impact of the aforementioned limitations [3]–[9]. Fig. 1 
illustrates the Pareto fronts of 50 Hz LFTs and MFTs for a 
20 kW system. It can be seen that increasing the operating 
frequency allows for significant improvements in terms of 
power density and efficiency. It should be noted that, for power 
electronic converters, medium-frequency is not uniquely 
defined. In this context, medium-frequency can be quantified 
with the power-frequency product, which is usually in the 
range of [0.05, 5.0] MHz-kW, i.e., the absolute operating 
frequency of a system is dependent on the power level.

However, the usage of medium-frequency introduces new 
challenges: additional core losses (e.g., due to eddy currents in 
the core and magnetic relaxation), high frequency losses in the 
windings (e.g., due to skin and proximity effects), and parasitic 
resonances [8], [9]. Moreover, MFTs require power electronic 
converters, which are inverting and rectifying the voltages and 
currents at the desired operating frequency [4]–[6], [10], [11]. 
With insulated gate bipolar transistors (IGBTs) (or with hard-
switched Silicon MOSFETs), the operating frequency of MFTs 
is mainly limited by the switching losses of the inverter and 
rectifier stages. However, with newly available fast-switching 
Silicon-Carbide (SiC) and Gallium-Nitride (GaN) transistors 
and/or soft-switching techniques, the switching losses are 
greatly reduced and the complete design space of MFTs can be 
used [6], [7], [12]. This implies that a detailed knowledge of 
the design procedure of MFTs is required for realizing efficient, 
compact, and inexpensive MFTs utilizing the full potential of 
modern semiconductors.

Multiple degrees of freedom are available for the design 
of MFTs: frequency, winding type, winding geometry, core 
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Fig. 1.  Comparison between the Pareto fronts of 50 Hz LFTs and MFTs 
for a 20 kW and 600 V (RMS) system. The LFTs are constructed with solid 
copper wires and with grain oriented electrical steel cores (“Thyssen Krupp 
Powercore H 100-27”, 2.0 T saturation flux) [30]. The MFTs are constructed 
with litz wires (100 µm stranding) and ferrite cores (“TDK N97”, 300 mT 
saturation flux) [31]. 

shape, core material, and cooling concept. The analysis of such 
devices can be split into several categories.

• Equivalent circuit: The MFT is described with an 
equivalent circuit describing the magnetizing flux, the 
leakage flux, the magnetic coupling, and the voltage 
transfer ratio [13], [14]. 

• Core losses: The core losses (e.g., due to hysteresis 
and eddy current losses) are usually computed with 
semi-empirical methods, which are calibrated with 
measurements [8], [15], [16]. 

• Winding losses: Different methods exist for computing the 
winding losses at medium-frequency (e.g., due to skin and 
proximity effects) for different winding configuration (e.g., 
litz wire, foil, and printed circuit board (PCB) integrated) 
[9], [17]–[19]. 

• Thermal: A thermal model of the MFT and the 
corresponding cooling system is used for the extraction of 
the temperature distribution [5], [8], [20]. 

• Other aspects: Additionally, parasitic capacitances, 
resonances, electric and/or magnetic shielding, electrical 
insulation, and dielectric losses should be considered for 
some designs [7], [8], [21].

The aforementioned aspects are typically combined in order 
to obtain a full model, which allows for the optimization of 
MFTs. Such models can be classified into three categories.

• Full-analytical models: The model is based on analytical 
equations and features a closed-form analytical solution 
[5], [8], [9], [22]–[24]. The approach is simple and 
features a clear physical interpretation. Nevertheless, the 
accuracy of full-analytical models is limited. 

• Semi-numerical models: The model is based on analytical 
equations, but does not feature an explicit solution. The 
optimal design is obtained with numerical optimization 
(e.g., brute-force, gradient optimization, and genetic 
algorithm) [11], [25]–[29]. Such numerical optimizations 
are accurate and reasonably fast. However, it is difficult 
to identify the mechanisms leading to the optimal design. 
Furthermore, the obtained results are specific to the given 
specifications and cannot be easily generalized. 

• Numerical models: The MFT parameters are extracted from 
numerical field simulations (e.g., finite element method 
(FEM) simulations) [6], [21]. However, such models are 
time-consuming (modeling complexity and computational 
cost) and only provide limited advantages compared to the 
semi-numerical approach [13]. Therefore, such models are 
typically not used for optimization processes.

Explicit analytical equations for the design of optimal MFTs 
have been successfully given in [9], [22], [24], [32]. Analytical 
scaling laws (scaling of the characteristics of MFTs with 
respect to a reference design) have been proposed for different 
power densities, efficiencies, and frequencies in [22], [23], [33], 
[34]. The complexity of the mapping between the design space 
and the performance space can be seen in Fig. 1 (mapping of 
the operating frequency to the performance space) and has also 
been observed in [12], [32], [35]. However, to the knowledge 
of the authors, all the aforementioned aspects have not been 
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brought together up to now. The properties of optimal MFT 
designs and the scaling of MFTs under different conditions 
highlight the fundamental characteristics and limitations of 
MFTs. A better understanding of the mapping between the 
design space and performance space is also required for using 
all the available degrees of freedom during multi-objective 
optimization and for understanding the limitations of the 
analytical optima. 

Therefore, this paper examines the optimization and the 
scaling of MFTs in detail and is organized as follows. Section 
II presents the chosen full-analytical MFT model. Section 
III shows which point in the design space is mapped to the 
optimal design and which regions are mapped to quasioptimal 
designs (design space diversity). Moreover, scaling laws are 
derived for the optimal designs for different power densities, 
power ratings, temperature rises, and efficiencies. Section IV 
applies the presented methods to a 20 kW and 20 kW/L 
(328 W/in3) MFT. Section V successfully compares the results 
obtained with the full-analytical model with a more elaborate 
semi-numerical model. Finally, Section VI highlights the limits 
of the full-analytical models and the corresponding scaling laws.

II. Full-Analytical Modeling 
In this section, a full-analytical model of MFTs is presented. 

The core losses, the winding losses, and the thermal limit are 
considered with simplified analytical models.

A. Geometry and Operating Conditions 

The MFT depicted in Fig. 2 is considered and features the 
most common design choices: E-core (without air gap) with 

Ac = 2 tc zc = Core cross section

Aw = dw hw = Winding cross section

Vc = Core volume

Vw = Winding volume

Vbox = MFT boxed volume

mtot = MFT mass

At = Exposed area for cooling

xcw = Ac / Aw,    xc = zc / 2 tc,    xw = hw / dw
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Fig. 2.  Considered MFT geometry with E-core, shell-type arrangement, and 
without winding interleaving. The ratios xcw, xc, and xw define the geometrical 
aspect ratios of the MFT.

a shell-type arrangement and litz wire windings (without 
interleaving). The boxed volume (Vbox) together with the 
geometrical aspect ratios (xcw, xc, and xw) defines uniquely the 
geometry of the MFT (cf., Fig. 2). For simplifying the design 
equations, a turns ratio of 1 : 1 is first selected. The volumetric 
(ρ) and gravimetric (γ) power densities are used as performance 
indicators for the geometry of the MFT:

                                        (1)

                                        (2)

In the following, the volumetric power density is primarly 
considered but all the results can also be obtained for the 
gravimetric power density. The MFT is assumed to operate 
with sinusoidal currents and voltages. The apparent power of 
the MFT (S) can then be expressed with the help of the power 
factor and the active rated power:

                         (3)

The aforementioned design choices have been made since 
they represent the most typical operation condition of MFTs 
[4]–[6], [25], [26]. Nevertheless, the presented method can 
be adapted to other MFT designs and operating conditions, 
without fundamentally changing the obtained results:

• Transformer type: Transformers with multiple windings 
(e.g., three-phase transformers) can be considered with 
small adaptations of the design equations [1], [22]. 

• Core shape: Other core shapes (e.g., ETD, RM, and U) 
can be used without any problem by adapting the relations 
shown in Fig. 2. 

• Winding type: Windings composed of solid wires or 
foils can also be used with minor adaptations of the 
formulas used for the computations of the losses [5], [8]. 
Interleaving of the winding can also be considered [8], [9]. 
Different types of winding arrangements (shell-type or 
core-type) are also possible [8], [22]. 

• Turns ratio: The turns ratio of the MFT can be adapted 
to change the voltage transformation ratio with a small 
impact on the design variables [5], [22]. 

• Excitation: Arbitrary (instead of sinusoidal) current and 
voltage waveforms can be considered with the models 
presented in [15], [16], [19]. 

B. Core and Winding Losses 

The core losses of the MFT are computed with the Stein-
metz equation, where the lamination factor (if applicable) is 
included in the Steinmetz parameters [8], [16]. Then, the flux 
density (Bpk), the loss density (pc), and the core losses (Pc) can 
be expressed as 

                                                                (4)
                                  

                                   (5)

                                      (6)
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This model neglects the frequency and temperature depen-
dences of the Steinmetz parameters [15], [20]. In addition, the 
following limitations (saturation flux and maximal operating 
frequency of the core material) apply to the aforementioned 
model:

                       (7)
                          

                                     (8)  

The Steinmetz equation is an empirical model which is 
parametrized with measurement data. The accuracy of the 
model (in the relevant frequency and flux density ranges) 
should be checked for every considered core material. 

The winding losses of litz wire windings (shell-type 
arrangement) are computed with the asymptotic approximation 
of the proximity effect losses (without interleaving) [5], [19], 
[22], [24]. Then, the current density (JRMS), the proximity effect 
factor (aw), the skin depth (δ), the loss density (pw), and the 
winding losses (Pw) can be expressed as

      (9)
                               

                     (10)

                                    (11)

                            (12)

                                       (13)

This model neglects the temperature dependence of the 
winding losses, the exact placement of the wires, and the 
additional losses occurring when the skin depth reaches the 
strand diameter [13], [18]. The filling factor considers the 
packing of the strands (litz wire), the packing of the turns, and 
the insulation distances. The following limitations (maximal 
current density and skin depth) apply to the aforementioned 
model:

2                (14)

                        (15)

Within the aforementioned limits, this model represents a good 
approximation of the high-frequency winding losses (less than 
10% error compared to FEM simulations) as analyzed in [13], 
[22]. 

From the core and winding losses, different performance 
indicators can be extracted. The ratio between the core and 

winding losses (rcw), the ratio between the AC and DC winding 
resistances (rw), the total MFT losses (Pl), and the efficiencies 
(ηfl and ηpl) can be expressed as

                                                 (16)

                                          (17)

                                           (18)

                             (19)

                          (20)

C. Thermal Modeling 

A thermal model is required for ensuring that the MFT is not 
operated beyond the thermal limit. However, complex thermal 
models [5], [15], [26], [29], [36] are not adapted for deriving 
scaling laws. A model based on the convection coefficient and 
the exposed area of the MFT [23], [24] has been selected. The 
convection coefficient (ht) is obtained with a fit (temperature 
and exposed area dependences) of the empirical formulas 
provided in [8]:

                              (21)

This model can be used to describe natural and/or forced 
convection processes. Heat conduction and radiation 
processes are neglected. Then, the temperature rise (ΔT) of the 
transformer (windings and core) and the corresponding thermal 
limit can be expressed as

(22)
                                

                              (23)

III. Optimization and Scaling Laws 
In this section, the presented full-analytical model (cf., 

Section II) is used to derive conditions for optimal designs. 
Furthermore, the properties of the optimal designs are analyzed 
for different frequencies, power densities, and power ratings. 

A. Area Product 

The area product (product of the core and winding window 
cross sections) is a common method for designing LFTs [8], 
[23]. The area product, which is directly linked to the LFT 
power rating, can be expressed as 

(24)
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For LFTs, the core losses are low and the peak flux density 
(Bpk) can be set to the saturation flux density level (Bsat) and the 
current density (JRMS) to the maximum value (JRMS,max). Then, 
the area product represents a valuable design equation for 
obtaining a first approximation of a LFT size and performance. 
The area product also indicates that the operation at an 
increased frequency will lead to more compact designs. 

However, for MFTs, the optimal flux and current densities 
can be significantly lower than the maximum values [5], [24], 
[33]. This is due to the increased core losses (parameter αc) 
and the proximity effect losses in the windings (parameter aw). 
This implies that the area product cannot be directly used for 
designing MFTs. Nevertheless, the area product still represents 
an upper bound for MFTs, which can be useful as a starting 
point during the design process. 

B. Optimal MFT Design 

With the aforementioned models (cf., Section II), it is 
possible to derive a closed-form solution for optimal MFTs [5], 
[22]. However, several assumptions are required for obtaining 
a simple solution:

• The power rating, power factor, and voltage level (P, cos (φ), 
and VRMS) are fixed. Therefore, it is accepted that the 
reactive power is not strongly dependent on the leakage 
and magnetizing inductances of the different designs. This 
is the case for MFTs with high magnetic coupling factors 
[13]. 

• The geometry is fixed (Vbox, xcw, xc, and xw). This corres-
ponds to a specific magnetic core size. 

• The core material (Bsat, kc, αc, and βc) and the winding 
stranding (JRMS,max, kw, σ, and ds) are selected, i.e., not 
variable. 

• The number of turns (n) is accepted to be a continuous 
(non-discrete) variable. The winding filling factor is in-
dependent of the number of turns and the exact packing 
pattern of the turns is not considered.

f (kHz)

n

Design space / frequency / number of turns

JRMS = JRMS,max

fopt (n)nopt ( f )

fopt,0

∆T = ∆Tmax

ds = δ

f  = fc,max

Pl ( fopt,0, nopt,0)

Bpk = Bsat

Fig. 3.  MFT design space for different frequencies and numbers of turns, 
assuming a constant area product and/or core size. The design space limits 
(black and gray), the thermal limit (green), and the optimal designs (red) are 
shown.

With these assumptions, the only remaining degrees of 
freedom are the operating frequency (f ) and the number of 
turns (n). This design space is constrained by the saturation 
flux density (cf., (7)), the current density (cf., (14)), and the 
maximum frequency (cf., (8) and (15)). Fig. 3 shows the 
resulting design space. With the presented models, the MFT 
losses can be expressed as

                            (25)

                     (26)

                     (27)

where the following constants are defined:

 (28)
                                 

(29)
                                         

Now, the optimal number of turns for a given frequency (nopt) 
and the optimal frequency ( fopt) for a given number of turns 
can be calculated (cf., Fig. 3). The following expressions can 
be calculated with partial derivatives:

(30)
    

(31)
    

It should be noted that the optimal frequency ( fopt) only 
exists if βc > αc, which is almost always respected for core 
materials operated at typical frequencies. For βc = αc, the 
optimal frequency would be zero, and all the designs would 
be operated at the saturation limit [33]. The optimal number 
of turns (nopt) can be very low or very high, which can lead 
to practical problems for the construction of the windings. 
However, the number of turns can be adapted by changing the 
core geometrical aspect ratios, i.e., the ratio between the core 
(Ac) and windings (Aw) areas (cf., Fig. 2). 

The intersection between nopt and fopt represents the global 
optimum (gradient of the loss function is zero, cf., Fig. 3) and 
can be expressed as

(32)
               

This implies that beyond fopt,0, the increase of the proximity 
effect losses in the windings exceeds the reduction of the core 
losses. The designs with the optimal number of turns feature 
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the following property between the core and winding losses (at 
any frequency as long as the saturation flux, maximum current 
density, and maximum frequency are not reached) [5], [22], 
[24]:

(33)
                                 

The global optimum, additionally, features a specific ratio 
between the AC and DC winding resistances [5], [22], [24]: 

(34)
   

The global optimum can be situated outside the design 
space, especially for designs with large power densities. Then, 
the feasible optimum will be located at the boundary of the 
design space, typically at the core saturation limit. Furthermore, 
the thermal limit is also restricting the valid designs around 
the global optimum (cf., Fig. 3). However, MFTs are typically 
operated below the saturation, frequency, and current density 
limits [4]–[6], [11] and, therefore, the derived optimum can be 
used. Hence, the nature of this global optimum is analyzed in 
more details in the next subsection. 

C. Frequency Diversity 

In the design space shown in Fig. 3, all the designs with 
an optimal number of turns (nopt, as long the saturation flux 
is not reached) are considered for different frequencies. This 
restriction is accepted since there are no reasons to build a MFT 
with a non-optimal number of turns. By contrast, due to the 
switching losses of the power semiconductors and/or electro 
magnetic interference (EMI) issues, it can be desirable to select 
an operating frequency below fopt,0. The impact of the selection 
of a sub-optimal operating frequency can be described with the 
following equation:

(35)
       

where ξ represents the allowed relative deviation compared to 
the optimal frequency ( fopt,0) and ε the corresponding relative 
impact on the losses, as illustrated in Fig. 4(a). 

The resulting characteristic of the losses curve is rather flat 
with respect to frequency ( f < fopt,0) as long as the saturation 
flux is not reached (nopt is located inside the design space). As 
soon as nopt crosses the saturation limit, the number of turns 
should be selected with respect to the saturation limit (and not 
anymore with nopt). This leads to a rapid increase of the winding 
losses and the optimal ratios between the core and winding 
losses (cf., (33)) cannot be anymore achieved. Therefore, at the 
saturation limit, the total losses are rapidly increasing.

The aforementioned equation can be solved analytically if 
all the designs are located inside the design space limitations 

f (kHz)

P l
 (  

f, 
n o

pt
)   

(W
)

ξ

Freq. diversity def. Freq. diversity res.
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%

)

(b)(a)

Pl ( f, nopt)

(1+ε) Pl ( fopt,0, nopt,0)

Pl ( fopt,0, nopt,0)

fopt,0 / ξ fopt,0 αc    [1.2, 1.8]
βc    [2.0, 2.8]

worst-case
Bpk = Bsat

Fig. 4.  (a) Definition of the frequency diversity (cf., (35)) with reference to 
the global optimum (cf., (34)). For the different frequencies ( f ≠ fopt,0), the 
respective optimal number of turns (nopt) is considered, as long the saturation 
flux is not reached (Bpk < Bsat). (b) Obtained frequency diversity (cf., (36)) 
considering a typical range of Steinmetz parameters.

(nopt is not limited by the saturation flux), which is the case for 
typical MFT designs. This leads to

  
                       (36)

where it should be noted that the solution of the equation is 
only dependent on αc, βc, and ξ. Therefore, the solution can 
be evaluated numerically for a range of Steinmetz parameters 
covering typical core materials [8], [31], [37]–[42]. 

Fig. 4(b) shows the obtained results. It can be observed that 
frequencies significantly below fopt,0 can be selected with a 
minor impact on the efficiency. For example, with half of the 
optimal frequency (ξ = 2), the losses are, at most, only 15% 
higher than the global optimum. It can be concluded that the 
MFT loss curve is always flat around fopt,0. This implies that the 
optimum ( fopt,0) should be considered carefully for converter 
designs. A small amount of frequency-dependent losses in 
the converter (e.g., switching losses of the semiconductors) 
can significantly shift down the optimal operating frequency 
of the complete converter with respect to the MFT optimum, 
however, with a minor impact on the achieved performances. 

Nevertheless, if the selected operating frequency is 
significantly below fopt,0, this indicates that a less expensive 
core material and litz wire could be selected with a minor 
impact on the achieved performance. However, the optimal 
frequency ( fopt,0) is interesting for examining the fundamental 
design limitations of power converters. This holds particularly 
true with modern SiC and GaN transistors, where the magnetic 
components often limit the achievable efficiency and power 
density [12]. Therefore, scaling laws are derived for the 
optimal MFT ( fopt,0 and nopt,0) in the next subsection. 

D. Scaling Laws 

The scaling of MFTs is considered for different power 
ratings (P) and power densities (ρ) [23], [34]. Different 
hypotheses are made in order to obtain simple and general 
scaling laws: 

• The power factor and voltage levels (cos (φ), and VRMS) are 
fixed. The power rating is scaled with the current. However, 
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the impedance of the MFT (ratio between VRMS and IRMS) 
has only a minor impact on the derived scaling laws. 

• The volume (or power density) of the MFT is scaled with 
fixed (constant) geometrical aspect ratios (xcw, xc, and xw). 

• The core material (Bsat, kc, αc, and βc) and the winding 
stranding (JRMS,max, kw, σ, and ds) are fixed. 

• The number of turns (n) is accepted to be a continuous 
(non-discrete) variable. The winding filling factor is 
independent of the number of turns, the power rating, and 
the power density. 

• The global optimum is considered for all the designs ( fopt,0 
and nopt,0). It is accepted that the global optimum is located 
inside (and not at the boundary) of the design space (cf., 
Fig. 3), which is the case for typical MFT designs. 

With the aforementioned hypotheses, it is possible to derive 
analytical scaling laws for the power density (ρ) and the power 
rating (P):

(37)
               

(38)
               

where ρref and Pref represents the reference design and λ the 
scaling exponent. Each characteristic, x, can be scaled with 
respect to the reference value, xref. The following characteristics 
are considered: the power rating (P), the volumetric power 
density (ρ), the gravimetric power density (γ), the temperature 
rise (ΔT), the loss fraction (1 − ηfl and 1 − ηpl), the frequency 
( fopt,0), the number of turns (nopt,0), the peak flux density (Bpk), 
the current density (JRMS), the AC/DC winding resistance ratio 
(rw), and the ratio between the core and winding losses (rcw). It 
should be noted that simple exponential scaling laws only exist 
due to the special properties of the global optimum (cf., (34)). 

There are several ways of scaling a MFT for different 
power ratings and power densities. However, in order to give 
meaningful results, certain parameters and/or performance 
indicators should be kept constant, as shown in Fig. 5(a) [23]: 

• P = const. -The power rating of the MFT is constant and 
the power density is scaled (cf., (37)). 

• ρ = const. -The power density of the MFT is constant and 
the power rating is scaled (cf., (38)). 

• η = const. -The power rating of the MFT is scaled with a 
constant efficiency (cf., (38)). 

• ΔT = const. -The power rating of the MFT is scaled with a 
constant temperature rise (cf., (38)). 

Exact analytical solutions exist for the scaling coefficients 
(λ). The solutions only depend on the empirical parameters 
αc, βc, νt, and κt. For extracting general statements, the scaling 
coefficients are extracted for all the parameter combinations 
occurring for typical core materials and convective heat 
transfer mechanisms, cf., Fig. 5(b) [8], [31], [37]–[42]. The 
power rating of the MFT is scaled with a constant voltage. 
However, it should be noted that all the parameters, except the 
number of turns (nopt,0), are independent of the impedance of 
the MFT (i.e., the ratio between VRMS and IRMS). 

Table I shows the scaling coefficients for a constant 
power rating (P = const.). For increasing power densities, 
the frequency, and temperature rise are increasing, until the 
thermal limit is reached. The loss fraction is slowly increasing 
with the power density, indicating that the Pareto front is flat 
with respect to the power density. 

Table II depicts the scaling coefficients for a constant 
power density (ρ = const.). For increasing power ratings, 
the temperature rise is increasing while the frequency is 
decreasing. The loss fraction is also slowly decreasing with the 
power rating, implying that high power MFTs are intrinsically 
more efficient but difficult to cool down. 

Table III shows the scaling coefficients for a constant 
efficiency (η = const.). For increasing power ratings, the power 
density is increasing while the frequency is decreasing. The 
temperature rise is also increasing, which implies that high 
power designs are hitting the thermal limit. This is due to the 
reduction of the ratio between the surface area (Ah) and the 
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m
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Fig. 5.  (a) Scaling of MFTs for different power ratings (P) and power 
densities (ρ) with characteristics for constant power rating, constant power 
density, constant temperature rise, and constant efficiency. For the scaling, 
the global optimum (cf., (34)) is considered with a given set of (constant) 
parameters for the core material (αc and βc) and the heat transfer mechanism (νt 

and κt). (b) Considered parameter ranges and assumptions for Tables I, II, III, 
and IV. 

TABLE I
Scaling Coeff. / P = const. / ρ = var.

x Coeff. ( λ λ )

P 0 [+ 0.00, + 0.00]

ρ 1 [+ 1.00, + 1.00]

γ 1 [+ 1.00, + 1.00]

∆T 2αc + 5βc + 4κ t + 2βc κ t − 2
3(βc + 2)(ν t + 1) [+ 0.61, + 1.08]

1 − ηpl
2αc + 3βc − 6

3βc + 6 [+ 0.20, + 0.42]

1 − ηfl
2αc + 3βc − 6

3βc + 6 [+ 0.20, + 0.42]

fopt,0
1
3 [+ 0.33, + 0.33]

n opt,0
αc + βc − 4

3βc + 6 [− 0.07, + 0.04]

Bpk
6−αc
3βc + 6 [+ 0.29, + 0.40]

JRMS
αc + 3βc
3βc + 6 [+ 0.60, + 0.71]

rw 0 [+ 0.00, + 0.00]

rcw 0 [+ 0.00, + 0.00]
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volume (Vbox) for large MFTs. 
Table IV shows the scaling coefficients for a constant 

temperature rise (ΔT = const.). For increasing power ratings, 
the power density and the frequency are decreasing. The loss 
fraction is decreasing, implying that high power MFTs should 
be particularly efficient for staying thermally feasible. The 
same trend can also be observed for LFTs [1], [2]. 

General trends can be identified independent of the chosen core 
material and convective cooling mechanisms (cf., Fig. 5(b)). The 
following conclusions are drawn from the scaling laws. Compact 
designs are running with higher frequencies, temperature 
rises, flux densities, and current densities but feature limited 
efficiencies. High power designs feature lower frequencies and 
higher efficiencies but limited cooling capabilities. 

Scaling laws can also be derived for a fixed frequency (different 

TABLE II
Scaling Coeff. / ρ = const. / P = var.

TABLE IV
Scaling Coeff. / ΔT = const. / P = var.

x Coeff. ( λ λ )

ρ 0 [+ 0.00, + 0.00]

P 1 [+ 1.00, + 1.00]

γ 0 [+ 0.00, + 0.00]

∆T βc − 2αc − 4κ t − 2βc κ t + 2
3(βc + 2)(ν t + 1) [+ 0.03, + 0.30]

1 − ηpl
− 2αc
3βc + 6 [− 0.30, − 0.17]

1 − ηfl
− 2αc
3βc + 6 [− 0.30, − 0.17]

fopt,0 − 1
3 [− 0.33, − 0.33]

n opt,0
−αc − βc − 2

3βc + 6 [− 0.48, − 0.42]

Bpk
αc

3βc + 6 [+ 0.08, + 0.15]

JRMS
−αc

3βc + 6 [− 0.15, − 0.08]

rw 0 [+ 0.00, + 0.00]

rcw 0 [+ 0.00, + 0.00]

TABLE III
Scaling Coeff. / η = const. / P = var.

x Coeff. ( λ λ )

1 − ηpl [0 + 0.00, + 0.00]

1 − ηfl [0 + 0.00, + 0.00]

P [1 + 1.00, + 1.00]

ρ 2αc
2αc + 3βc − 6 [+ 0.50, + 1.00]

γ 2αc
2αc + 3βc − 6 [+ 0.50, + 1.00]

∆T 2αc + βc + 4κ t − 2βc κ t − 2
(ν t + 1)(2αc + 3βc − 6) [+ 0.56, + 1.00]

fopt,0
2− βc

2αc + 3βc − 6 [− 0.17, − 0.00]

n opt,0
2− βc −αc

2αc + 3βc − 6 [− 0.50, − 0.42]

Bpk
αc

2αc + 3βc − 6 [+ 0.25, + 0.50]

JRMS
αc

2αc + 3βc − 6 [+ 0.25, + 0.50]

rw [0 + 0.00, + 0.00]

rcw [0 + 0.00, + 0.00] from fopt,0) and for designs at the saturation limit. However, 
for obtaining simple scaling coefficients (cf., (37) and (38)), 
additional assumptions on rw and/or rcw are necessary [34]. 
Furthermore, it is difficult to draw general conclusions from 
scaling laws with sub-optimal designs. Therefore, only the scaling 
of optimal designs ( fopt,0 and nopt,0) is considered in the following.

IV. Analytical Results 
In this section, the aforementioned optimum, frequency 

diversity, and scaling laws are applied to a specific MFT 
design. The reference design features the following ratings: P 
= 20 kW, ρ = 20 kW/L, and VRMS = 600 V. 

A. Considered Parameters 

An E-core based MFT with shell-type arrangement is 
considered (cf., Fig. 2). The key parameters are summarized 
in Table V. A “TDK N97” ferrite core is selected where the 

x Coeff. ( λ λ )

∆T [0 + 0.00, + 0.00]

P [1 + 1.00, + 1.00]

ρ 2αc − βc + 4κ t + 2βc κ t − 2
2αc + 5βc + 4κ t + 2βc κ t − 2 [− 0.36, − 0.03]

γ 2αc − βc + 4κ t + 2βc κ t − 2
2αc + 5βc + 4κ t + 2βc κ t − 2 [− 0.36, − 0.03]

1 − ηpl
2βc κ t − βc − 4κ t − 2αc + 2

2αc + 5βc + 4κ t + 2βc κ t − 2 [− 0.36, − 0.22]

1 − ηfl
2βc κ t − βc − 4κ t − 2αc + 2

2αc + 5βc + 4κ t + 2βc κ t − 2 [− 0.36, − 0.22]

fopt,0
− 2β c

2αc + 5βc + 4κ t + 2βc κ t − 2 [− 0.45, − 0.34]

n opt,0
2− 2βc − 4κ t − 2αc

2αc + 5βc + 4κ t + 2βc κ t − 2 [− 0.48, − 0.41]

Bpk
2αc + 4κ t − 2

2αc + 5βc + 4κ t + 2βc κ t − 2 [− 0.05, + 0.14]

JRMS
βc (2κ t − 1)

2αc + 5βc + 4κ t + 2βc κ t − 2 [− 0.32, − 0.17]

rw [0 + 0.00, + 0.00]

rcw [0 + 0.00, + 0.00]

TABLE V
MFT Parameters cf., Fig. 2

(φ) = 0.85 / VRMS = 600V

xcw = 1.5 / xc = 1.5 / xw = 5.0

k c = 1.35 / α c = 1.44 / β c = 2.46

fc,max = 700 kHz / Bsat = 300 mT

k w = 25% / d s = 100 µm / σ = 46 MS/m

JRMS,max = 8.0A/mm2

Thermal k t = 12.0 / ν t = + 0.09 / κ t = −0.11

∆Tmax = 100 °C / 40 °C ambient
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Steinmetz parameters are extracted with a least square fit of the 
losses (T = 70 °C, Bpk ∈ [25, 150] mT, and f ∈ [50, 200] kHz) 
[31]. The maximum error between the considered Steinmetz 
model and the datasheet values is, in the considered range, 
less than 5 %. The windings are composed of litz wires with 
100 µm strands. The filling factor of 25 % considers the filling 
factor of the litz wire itself, the filling factor of the turns, and 
the insulation distances to the core. The convection coefficient 
parameters are fitted for the chosen geometry with an air speed 
of 3 m/s with the formula presented in [8]. 

B. Optimal Design 

Fig. 6(a) depicts the obtained design space (cf., Fig. 3) for 
P = 20 kW and ρ = 20 kW/L. The core losses are diminishing 
with increasing number of turns and/or frequencies (volt-second 
product), as shown in Fig. 6(b). On the contrary, the winding 
losses are increasing with increasing number of turns (current 
density) and/or frequencies (proximity effect), as shown Fig. 
6(c). Therefore, an optimum exists and has the following 
characteristics: fopt,0 = 86 kHz, nopt,0 = 10.5, rw = 1.71, rcw = 
0.81, JRMS = 2.9 A/mm2, Bpk = 84 mT, ΔT = 41°C, ηpl = 99.72%, 
and ηfl = 99.76%. It can be seen that the optimal design is 
located far away from the design space limits (saturation flux, 
maximum current density, maximum frequency, and thermal 
limit). 

C. Frequency Diversity

Fig. 7(a) shows the design space for P = 20 kW and different 
power densities and frequencies. The optimal number of turns 
(nopt, as long the saturation flux is not reached) is considered for 
all the designs. It can be seen that all the optimal designs (fopt,0) 
are not restricted by the saturation flux, maximum current 
density, or maximum frequency. This means that the optimum 
derived in Section III-B can be used. The efficiency is rapidly 
dropping for designs operated at the saturation flux (cf., Fig. 4). 

The frequency diversity presented in Section III-C can be 
observed in Fig. 7(b) where the Pareto fronts are shown for f < 

fopt,0. As expected (cf., Fig. 4(b)), frequencies well below fopt,0 can 
be chosen with a minor impact on the efficiency: ε = 11% for 
ξ = 2 and ε = 26% for ξ = 3 (cf., (36)). It should be noted that, 
with the considered degrees of freedom (volume, number of 
turns, and frequency), only a single design (with fopt,0 and nopt,0) 
exists at the maximum allowable power density, explaining the 
sharp tip of the Pareto front. 

D. Scaling Laws 

Fig. 8 depicts the scaling of the aforementioned MFT for 
different power ratings and power densities (cf., Section III-D). 
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Fig. 6.  Design space of a 20 kW and 20 kW/L MFT (cf., Table V) for different frequencies and numbers of turns. (a) The total losses. (b) The core losses. (c) The 
winding losses. The design space limits (black and gray), the thermal limit (green), and the optimal designs (red) are highlighted, as shown, schematically, in Fig. 
3 (cf., Section III-B). 
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All the designs are operated with the optimal frequency and the 
optimal number of turns (fopt,0 and nopt,0). The scaling trajectories 
are shown for constant power rating, constant power density, 
constant temperature rise, and constant efficiency around the 
reference design: Pref = 20 kW and ρref = 20 kW/L. 

The general conclusions drawn in Section III-D are verified: the 
compact designs are operated at higher frequencies, but have 
reduced efficiencies. High power designs are featuring higher 
efficiencies and reduced frequencies but also limited cooling 
capabilities. 

E. Core Material and Winding Stranding 

The Pareto front obtained with the defined parameters (cf., 
Fig. 7(b)) can be pushed by changing the core material and the 
stranding of the windings (all the other parameters remains 
unchanged, cf., Table V). The following core materials are 
considered: a low performance ferrite (“TDK N27”), a high 
performance ferrite (“TDK N97”), a nanocrystalline material 
(“VAC VITROPERM 500F”), and an amorphous material 
(“Metglas 2605SA1”) [31], [37]–[39]. The strand diameter is 
chosen between 50 µm, 100 µm, and 200 µm. All the designs 
are operated with the optimal frequency and the optimal 
number of turns ( fopt,0 and nopt,0). 

Fig. 9 shows the obtained Pareto fronts with the correspond-
ing optimal operating frequencies for P = 20 kW. It should be 
noted that all the designs (until the thermal limit) are not limited 
by the saturation flux, maximum current density, and maximum 
frequency. Logically, the designs with fine strands are operated 
at higher frequencies (cf., (32)). The designs with the ferrite 
materials feature comparable operating frequencies (βc−αc 
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Fig. 8.  Scaling of MFTs for different power ratings (P) and power densities (ρ). 
(a) Scaling of the frequency. (b) Scaling of the number of turns. (c) Scaling of 
the efficiency. (d) Scaling of the temperature rise. All the designs are operated 
with the optimal frequency and the optimal number of turns (fopt,0 and nopt,0). 
The different scaling curves are explained, schematically, in Fig. 5 (cf., 
Section III-D). 

difference is similar, cf., (32)). However, the designs based 
on the N97 ferrite material are more efficient compared to the 
designs using the N27 ferrite. The designs with an amorphous 
core feature low operating frequencies but also low efficiencies. 
The MFTs with a nanocrystalline core feature high efficiencies 
with reduced operating frequencies (βc−αc difference is small) 
and, therefore, represent an interesting alternative. 

It can be concluded that the choice of the core material and the 
winding stranding are interconnected. Designs with large βc−αc 
differences and reduced ds are operated at higher frequencies (cf., 
(32)) and feature a reduced Bpk JRMS product (cf., (24)). However, 
high optimal operating frequencies do not directly imply high 
efficiencies. This last statement is highlighted by comparing the 
N27 ferrite and the nanocrystalline materials in Fig. 9. 

V. Numerical Verification

The full-analytical model presented in Section II and 
the optimum derived in Section III are subject to several 
simplifications, which are required to obtain an explicit 
solution for the optimum and the associated scaling laws. In 
this section, the results obtained with the full-analytical model 
(cf., Section IV) are compared with a more elaborate semi-
numerical model in order to verify the validity of the presented 
results. 

A. Semi-Numerical Model 

A semi-numerical model of MFTs, which is based on the 
analysis presented in [5], [15], [26], [29], is considered. The 
following effects and limitations are taken into account: 

• Geometry: A discrete (integer) number of turns is 
considered with the exact packing pattern of the turns. The 
insulation distances (between the turns and to the core) are 
taken into account. 

• Core losses: The flux density, frequency, and temperature 
dependences of the core losses are considered with a loss 
map extracted from measurements [15], [16]. 

• Winding losses: The winding losses are computed with 
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Fig. 9.  (a) Pareto fronts. (b) Operating frequencies for different core materials 
and winding strandings. All the designs are operated with the optimal 
frequency and the optimal number of turns (fopt,0 and nopt,0). The power rating 
is fixed to 20 kW. 
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the exact packing pattern of the turns and the temperature 
dependence is taken into account [15], [29]. 

• Thermal model: A complex thermal model is used 
where the heat conduction, natural convection, forced 
convection, and radiation mechanisms are considered. The 
cross-coupling between the losses and the temperature 
distribution is taken into account [8], [26], [29], [35]. 
For the temperature rise, the hotspot of the transformer 
(typically the winding temperature) is considered. 

• Insulation design: The stress in the insulation (electric field 
and dielectric losses) is computed [21]. Designs with too 
large electric field values are excluded. 

• Equivalent circuit: The effect of the magnetizing and 
leakage inductances on the applied waveforms is also 
taken into account [13]. 

• Parasitic resonances: The effect of the open-circuit and short-
circuit resonances on the MFT operation is investigated [8], 
[43]. Designs with critically low resonance frequencies are 
excluded. 

This semi-numerical model has been successfully used and 
experimentally verified with the prototypes presented in [13], 
[43]–[45]. More particularly, in [45], the semi-numerical model 
is compared with FEM simulations, electrical measurements, 
and calorimetric measurements. The deviation between the 
computed and measured inefficiencies is below 0.05%. 

This semi-numerical model is based on analytical equations, 
but does not feature an analytical solution. Most important, the 
computation cost for a single design is reasonable: less than 
5kFLOPs [46]. Nevertheless, such a model leads to a multi-
variable, multi-constrained, mixed-integer, and non-linear 
optimization problem. Therefore, the optimization problem 
should be solved with a numerical solver. In the following, the 
computations methods listed below are compared: 

• Full-analytical: The presented full-analytical model (cf., 
Section II) is considered. The derived analytical optimum 
and scaling laws (cf., Section III) are used. 

• Semi-numerical/fixed ratios: The semi-numerical method 
is used with fixed (constant) geometrical aspect ratios (xcw, 
xc, and xw). 

• Semi-numerical/free ratios: The semi-numerical method is 
used and the geometrical aspect ratios of the MFT (xcw, xc, 
and xw) are also optimized. 

B. Scaling Laws 

The specifications considered in Section IV-A (cf., Table 
V) are selected and the methods defined in Section V-A are 
compared. The reference design for the scaling is featuring the 
same ratings as defined in Section IV-D: Pref = 20 kW and ρref 
= 20 kW/L. The scaling laws with constant power density (ρ 
= const.) and constant power (P = const.) are considered since 
they cover a representative part of the designs shown in Fig. 8. 

For the full-analytical model, the derived optimum is 
used (fopt,0 and nopt,0). For the two semi-numerical models, the 
optimum design (with respect to the efficiency) is selected 

with a mixed-integer multi-constrained genetic algorithm [27], 
[47]. The results are shown in Fig. 10 and Fig. 11 for constant 
power density (ρ = const.) and constant power (P = const.), 
respectively. 

It can be seen immediately that the consideration of discrete 
(integer) numbers of turns leads to discontinuous curves for 
the optimal designs. The derived scaling laws are valid as 
they correctly predict (qualitatively and quantitatively) the 
trends for all the considered parameters for fixed geometrical 
aspect ratios. With free geometrical aspect ratios, the optimal 
designs feature narrow winding windows and, therefore, 
reduced proximity effect losses (cf., (10)) and higher switching 
frequencies (cf., (32)). The increased switching frequencies 
also explain the reduced numbers of turns and the low flux 
densities. However, the thickness of the winding window 
cannot be reduced beyond a certain limit, due to practical 
constraints (packing of the turns) and due to the incompressible 
insulation distances (e.g., coil former thickness). Nevertheless, 
the optimization of the geometrical aspect ratios only provides 
limited advantages for the achieved efficiencies and power 
densities. This confirms the aspect ratios can be kept constant 
for the analysis of the fundamental characteristics of MFTs 
with an analytical model (i.e., scaling laws). 

High efficiencies (up to 99.85%) and power densities (up to 
63 kW/L) are achieved for the selected parameters. However, 
it should be noted that the presented designs are based on 
ideal characteristics: every core shape and every litz wire 
(number of strands and shape) is considered as available. The 
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with fixed and free geometrical aspect ratios. 
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thermal model assumes a uniform forced convection cooling 
from all the sides (40 °C ambient). Moreover, the volume 
and the losses of the cooling system (e.g., fans) are not taken 
into account. Finally, only the MFT is optimized without 
considering external factors (e.g., switching losses of the 
power semiconductors). Therefore, the performances shown 
in Figs. 10 and 11 are unlikely to be achieved for a constructed 
prototype and represent the theoretical limit. Nevertheless, 
such practical design restrictions could be easily integrated into 
the aforementioned computation methods. 

The optimal designs obtained with the three considered 
models feature similar efficiencies but different parameters, 
especially for the semi-numerical model with free geometrical 
aspect ratios. More particularly, large deviations can be 
observed for the operating frequency, the number of turns, 
and, therefore, the flux density. The discrepancies between the 
models and the underlying design space diversity are analyzed 
in more details in the next subsection. 

C. Design Space Diversity 

The parameter ranges defined in Section IV-A (cf., Table V) are 
selected with the following nominal ratings: P = 20 kW and ρ 
= 20 kW/L. The complete design space is swept for the three 
methods defined in Section V-A. A brute-force algorithm is 
used in order to explore the complete design space including 
eventual local minima. For each method, all the designs, which 
feature less than 15% more losses than the optimal design 
are kept. Fig. 12(a) shows the results obtained with the full-

analytical model, Fig. 12(b) shows the results obtained with 
the semi-numerical model with fixed geometrical aspect ratios, 
and, finally, Fig. 12(c) depicts the results obtained with the 
semi-numerical model with free geometrical aspect ratios. The 
results are displayed with parallel coordinate plots, where the 
designs with the optimal, minimum, and maximum frequencies 
are highlighted [48]. 

The full-analytical model delivers results similar to the 
semi-numerical model for fixed geometrical aspect ratios. A 
significant frequency diversity can be observed (cf., Section 
III-C). The designs with high operating frequencies feature low 
numbers of turns, low flux densities, and low current densities. 
The design space diversity is even greater if the geometrical 
aspect ratios are additionally optimized. For this last case, the 
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Fig. 11.  Scaling for P = const. = 20 kW. The presented scaling laws (full-
analytical model, cf., Section IV) are compared to semi-numerical models 
with fixed and free geometrical aspect ratios.
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variables vary in wide ranges, as shows in Table VI. 
Some designs, computed with the semi-numerical model 

(cf., Fig. 12(c)), are highlighted in Fig. 13 and Table VII. 
The following designs are selected: minimum losses (“D1”), 
minimum frequency (“D2”), maximum frequency (“D3”), 
minimum ratio between core and winding losses (“D4”), 
maximum ratio between core and winding losses (“D5”), 
and flat geometrical aspect ratios (“D6”). Despite extremely 
different parameters (e.g., frequency, core losses, winding 
losses, flux density, and current density) all selected designs 
feature very similar full-load efficiencies (ηfl). However, it 
should be noted that, depending on the ratio between the core 
and winding losses (rcw), the partial-load efficiencies (ηpl) are 
different. 

It can be seen that extremely different designs feature similar 
performances. This diversity would be even greater with 
additional degrees of freedom (e.g., core material and winding 
stranding). The design space diversity can be used to select a 
quasi-optimal design with additional design restrictions (e.g., 

TABLE VI
Design Space Diversity / Ranges / cf., Fig. 12(c)

P 20 kW ρ 20 kW/L

f [49,297]  kHz rw [1.11,3.40]

n [4,15] rcw [0.24,2.60]

xcw [0.75,7.00] JRMS [1.8,6.7]  A/mm2

xc [0.81,7.00] Bpk [27,116]  mT

xw [2.37,10.00] ∆T [33,48]  K

ηpl [99.64,99.82]% ηfl [99.77,99.80]%

D2 / 49 kHz / 10 turns D3 / 297 kHz / 5 turns D1 / 167 kHz / 6 turns 

D5 / 161 kHz / 5 turns D6 / 77 kHz / 6 turns D4 / 159 kHz / 8 turns 

Fig. 13.  Selected designs (20 kW and 20 kW/L, cf., Fig. 12(c)) with the 
following features: minimum losses (“D1”), minimum frequency (“D2”), 
maximum frequency (“D3”), minimum ratio between core and winding losses 
(“D4”), maximum ratio between core and winding losses (“D5”), and flat 
geometrical aspect ratios (“D6”). The parameters of the different designs are 
described in Table VII. 

available core shapes, available litz wires, and switching losses 
of the power semiconductors). The systematic exploration of 
the design space is also useful for drawing general conclusions 
on the advantages and limitations of the different models.

VI. Critical Analysis 
With the aforementioned results, different conclusions can 

be made on the full-analytical modeling (cf., Section II), the 
corresponding optimum, and the scaling laws (cf., Section III). 

• The full-analytical model is able to correctly capture 
qualitatively and quantitatively the design process of 
MFTs. However, many effects are neglected. This 
implies that some designs can be invalid (e.g., due to 
parasitics and thermal limits), difficult to construct (e.g., 
turn packing), and/or feature reduced efficiencies (e.g., 
due to simplified loss models and neglected temperature 
dependences of the losses). 

• For a given core geometry, the optimal design can be 
analytically extracted. Since the optimum is always flat 
with respect to frequency, the optimal operating frequency 
of the converter (considering switching losses of the 
power semiconductors) can be significantly lower than the 
optimal frequency of the MFT. 

• The analytical optimum of the MFTs should be considered 
with caution. Extremely different designs (e.g., concerning 
frequency, flux density, and ratio between core and 
winding losses) can lead to similar performances (design 
space diversity). This implies that the designs located 
around the global minimum (analytical optimum) and 
around local minima cannot be neglected during the 
design process. Nevertheless, the analytical optimum 
is useful to quantitatively understand the fundamental 
limitations of MFTs. 

• An optimal design can be scaled for different power ratings 
and power densities. These scaling laws correctly predict 

TABLE VII
Design Space Diversity / Designs / cf., Fig. 12(c) 



31

the trends and limitations of MFT designs. However, due 
to the required assumptions (e.g., fixed core material, fixed 
winding stranding, and fixed geometrical aspect ratios), 
these scaling laws are limited to theoretical analyses and 
cannot be used directly for the complete design process of 
MFT prototypes. 

It appears that the limitations of the full-analytical model are 
problematic for obtaining an accurate model of MFTs, which 
is required for virtual prototyping and design automation. 
Therefore, semi-numerical models should be used and the 
following modeling and optimization guidelines can be 
extracted (cf., Section V): 

• A multi-variable, multi-constrained, mixed-integer, and non-
linear optimization problem should be solved. Due to the 
design space diversity, many local minima exist. Moreover, 
the different local minima are flat, implying that designs 
located near a minimum can be almost as good as the 
minimum itself. Therefore, a robust optimization algorithm 
(e.g., particle swarm and genetic) should be selected 
[27], [47]. For designs with many discrete variables, a 
brute-force search algorithm may be the only practicable 
solution. Additionally, the complete DC-DC converter 
(e.g., semiconductors and DC-link capacitors) should also 
be considered for the optimization process of the MFT due 
to the cross-coupling between the components (mainly 
through the switching frequency). 

• In order to fully utilize the degrees of freedom offered by 
MFTs, the design space diversity should be checked after 
the optimization process. An important diversity implies 
that additional objectives (e.g., partial-load efficiencies, 
mass, or cost) can be added without any significant impact 
on the primary goals (e.g., efficiency and volume). 

• For a practical MFT design, many additional restrictions 
apply (e.g., available core shapes, available litz wires, 
and manufacturability constraints). However, the 
aforementioned design space diversity mitigates the 
impact of such design restrictions on the achievable 
performances. 

• Due to the flat optimum, model uncertainties and 
parameter tolerances can significantly impact the design 
parameters (e.g., switching frequency, flux density, and 
current density) of the optimal designs, however, with 
a minor impact on the achieved performances (e.g., 
efficiency, volume, and mass) [13]. 

• The full-analytical model can be used as a filter to reduce 
the design space (e.g., geometry, core material, and litz 
wire) before applying the more complex semi-numerical 
model. 

• Models based on numerical field simulations (e.g., FEM 
simulations) are extremely time-consuming (modeling 
complexity, and computational cost) and, therefore, are 
not adapted for optimizations [7], [21]. However, field 
simulations are useful for checking and fine-tuning the 
designs extracted during the optimization process. 

VII. Conclusion 
This paper investigates the optimization and scaling of 

MFTs. A simple full-analytical model is presented for the 
core losses (using the Steinmetz parameters), winding losses 
(including the HF losses), and temperature rise (convection 
process). With this model, the design space of MFTs is 
analyzed and the optimum is derived (frequency and number 
of turns). An increased operating frequency allows for more 
efficient and more compact designs. However, beyond a certain 
frequency, the performance cannot be further improved due to 
the increased core and HF winding losses. The properties of 
the optimum are analyzed and it is found that the optimum is 
always flat: the optimal operating frequency can be divided by 
two with less than 15 % additional losses (the number of turns 
is adapted). At the optimum, the flux density is typically lower 
than the saturation flux density of the core. 

Scaling laws are derived for optimal MFTs operated at 
different power ratings (with constant power density, constant 
efficiency, or constant temperature rise) and power densities 
(with constant power rating). These scaling laws allow the 
extraction of general statements about MFT performances. 
Compact designs are operated at higher frequencies, but have 
reduced efficiencies. High power designs are featuring higher 
efficiencies and reduced frequencies but also limited cooling 
capabilities. 

A 20 kW and 20 kW/L (328 W/in3) MFT with a ferrite core 
and litz wire windings is considered for a numerical evaluation. 
The proposed full-analytical model, optimum, and scaling laws 
are applied. The obtained results are successfully verified with 
a more elaborate semi-numerical model. It is found that the 
full-analytical model correctly predicts the behavior of MFTs. 
However, due to the multiple local minima of the mapping 
between the design space and the performance space (design 
space diversity), the analytical optimum cannot be used for the 
complete design process of high-performance MFT prototypes. 
Therefore, global multi-objective optimization should be 
performed with more advanced semi-numerical models. 
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