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Abstract—Slotless windings, both skewed and rhombic, are
widely used in industry. In addition to the drive torque, possibly
undesirable transverse torques and forces are generated. An
analytical derivation of the torque and force components in
all three directions is detailed in this paper for the skewed
and the rhombic winding. It is shown that for some winding
configurations alternating transverse torque components are gen-
erated, which may compromise stable operation in applications
where for example magnetic or gas bearings are involved. FEM
results, which enable the transverse torque for various winding
geometries to be quantified, are also included. Finally, the
theoretical results are verified by measurements.

Index Terms—Slotless winding, skewed type winding, rhombic
winding, 3D torque and forces, permanent magnet machine,
BLDC motor

I. INTRODUCTION

Slotless windings are widely used for small-sized electric
motors in industrial applications ranging from a hundred
milliwatts to a few hundred watts [1]. The main advantages
of a slotless design are the absence of cogging torque, the
elimination of losses caused by slot space harmonics and the
low winding inductance. The last two reasons also make it an
excellent choice for high-speed motors [2].

An overview of different types of slotless windings is given
in [3] and [4]. The skewed type and the rhombic winding
are commonly used types of windings. As can be seen from
Figure 1 both windings exhibit complex three-dimensional
structures with two overlapping layers. Undesirable transverse
torque and force components can be generated in addition to
the intended drive torque in the axial direction due to the
complex geometry and the obliquely wound strands. Figure 2
illustrates the formation of the drive and the transverse torque
considering the Lorentz forces in the winding conductors,
which are the reaction forces of a torque generated on the
rotor. For a obliquely positioned conductor pair with current [
and a permanent magnet field B in the zy-plane, the Lorentz
force acting on the conductor possesses a tangential force
component Fy whilst - due to the oblique arrangement of the
conductors - an axial force component F’, is also present. The
drive torque 7, is generated by the tangential force couple
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Skewed winding (a) and rhombic winding (b)

Fig. 1.

Fy whereas the axial component F, is responsible for the
transverse torque 7T%,. Depending on the winding type, the
geometry and the number of pole-pairs, the transverse torque
components of the individual strands within the winding are
then superimposed either constructively or destructively.

The unwanted transverse torque and forces generally need
to be absorbed by the bearing system. In some high-speed
applications where rotor dynamics are crucial, e.g. when mag-
netic bearings or gas bearings are involved, these transverse
torque components have to be either avoided by choosing
an appropriate winding type, configuration and geometry or
they have to be quantified such that they can be incorporated
into the rotor dynamic models. Therefore, estimates for the
absolute values as well as models for the time behavior of the
transverse torque and forces are needed.

The magnetic field in the air-gap has been studied in [5], [6]
and [7], where analytical field descriptions, which are used for
the analysis of the torque and force components in this work,
were derived. Winding factors of air-gap windings for the
harmonic field components resulting in alternating drive torque
have been analyzed, e.g. in [4]. However, a comprehensive
study of the transverse torque and possible non-vanishing
forces for air-gap windings has not been published, thus an
initial analysis with measurements for the transverse torque
and non-vanishing force components for the skewed winding
has been given in [8]. In this work, the analysis is extended
and includes an analytical derivation of the 3D torque and
force vectors for both the skewed and the rhombic winding.
While the analytical derivation based on the integration of the



Fig. 2. Lorentz forces for an obliquely arranged conductor pair with current
I and a magnetic field in the zy-plane. The tangential force component Fy
yields a drive torque 7%, while the axial component F’, results in a transverse
torque Toqy.
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Lorentz force yields correct results for both drive torque and
transverse torque for an iron-less motor design, FEM results
that also account for reluctance forces are introduced for the
transverse torque in the case of a motor design with a stator
back-iron.

The analysis starts with governing equations and assump-
tions made in Section II followed by a detailed analytical
derivation of the torque and force components based on the
Lorentz force for the skewed type winding in Section III.
In Section IV FEM results accounting for reluctance forces
for the skewed type winding are explained. In an abbreviated
form, analytical results of the torque and force components of
the rhombic winding are given in Section V. Finally, the mea-
surement setup is described in Section VI and measurements
verifying the theoretical results are presented.

II. GOVERNING EQUATIONS AND ASSUMPTIONS

The stator reaction force and torque of an electric machine
can be calculated by integrating the general force density

dF = dFy, + dFg (1

over the volume of the stator, which can be split up into a
Lorentz force component

dF, =J x B-dV )

and a reluctance force component
1
dFp = 5H2 -V -dV 3)

where J is the current density, B the magnetic flux density,
H the magnetic field and Vy the gradient of the local
permeability. The reluctance force density generated on a
boundary layer between a high permeability material ©1 — oo
and a material with permeability py can further be simplified
to

dFp = iB2 -dA 4)

2410

where dF and the total flux density B and the normal of the
boundary layer surface element dA are collinear. In regions
with constant permeability p the force dFr = 0 vanishes.
Using (4) for a slotless motor on the surface of the rotationally

symmetric stator core with inner radius R, the reluctance
torque component in axial direction

dA 1
dT, p =  R——— BQ-dA>=O 5
o (dAn) (m ©)

always vanishes as both factors in the cross product, the
distance Rj—ﬁ” and the the force dF'g, are collinear. Hence,
for stators studied in this work, analytical calculations for the
drive torque 7 using only Lorentz forces and neglecting the
reluctance force component yield correct results. However,
in order to calculate the transverse torque component, the
reluctance term needs to be accounted for.

According to [5] the permanent magnet flux density in the
air-gap of a slotless machine can be described in cylindrical
coordinates (7,0, z) by Fourier series for both the radial and
the azimuthal field components as

B, = ) - cos(p(nb — 7)) (6)

By = Bé -sin(p(nf — 7)), @)

> o
i
where p is the number of pole-pairs of the permanent magnet,
v the permanent magnet orientation angle and B,(«") (r) and
Bén)(r) are the Fourier coefficients of the n'" harmonic. The
field in axial direction is assumed to be B, = 0.

It is well known that for machines driven with symmetric
sinusoidal currents only the fundamental component of the air-
gap field contributes to a constant drive torque. Harmonic field
components can yield pulsating drive torque, transverse torque
or forces depending on their harmonic order. Therefore, from
a design point of view, the flux density of an optimal machine
consists solely of the fundamental component. Hence, for the
subsequent analysis it is assumed that the geometry of the
rotor and the permanent magnets have been ideally chosen
such that all the harmonic field components vanish and merely
the effects of the winding geometry on the 3D torque and force
vectors can be studied. The assumption of a purely fundamen-
tal field distribution can be considered realistic as for e.g. a
p = 1 pole-pair machine, a fundamental field distribution is
achieved with the use of cylindrical diametrically magnetized
permanent magnet [7]. Omitting all the harmonic components
the permanent magnet field in the air-gap can then be written
as

B, =
By =

() - cos(p(6 — 7)) ®)
o(r) - sin(p(0 — 7)) )

o W

A field description in Cartesian coordinates (x,y,z) will be
required for the further calculations which yields

B, B, - cos(f) — By - sin(6)
B, | = | B, -sin(d) + By - cos(f)
B, 0

B = (10)
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Fig. 3. Winding scheme and 3D structure of the skewed type winding.

III. SKEWED WINDING

In this section, an analytical derivation of the torque and
force vectors generated by a skewed winding is given. The
derivation is based on the fact, that the reaction torque and
force on the rotor are equal to the torque and force generated
in the stator. Hence the derivation is based on the integration
of the force density over the stator volume. Thereby, the
reluctance force caused by the stator core and the armature
reaction is intentionally neglected, which allows for a substan-
tial reduction in the complexity of the derivation. Hence only
the Lorentz forces generated in the winding are considered.
Although the obtained results for the transverse torque are
only valid for iron-less motor designs, they still illustrate
the qualitative characteristics of the winding. FEM results
considering Lorentz and reluctance forces as well as armature
reaction giving a quantitative description of the transverse
torque are shown in Section IV.

A. Winding Definition

A winding is defined by the number of phases m > 3 and
the number of pole-pairs p. A phase belt spreads over an angle
27t /mp (Figure 3) for each pole resulting in two consecutive
phase belts overlapping. Therefore, consecutive phase belts are
arranged in two layers lying on top of each other resulting in
a phase asymmetry, which however is not considered in the
further analysis.

Different winding description would be necessary for m = 1
and m = 2. However, as no constant torque can be achieved
with a single-phase winding, it is not further considered. The
two-phase winding has a very low utilization factor when
having only two windings situated 7/2 to each other, because
then only half of the volume is used for the winding. The
introduction of windings connected in series on the opposite
sides in the unused space to overcome this drawback results
in a four-phase winding (m = 4), which is then covered by
the given definition.

A single winding loop starting from angle ¢ as depicted in

X

Fig. 4. Coordinate system definition and winding loop parametrization.

Figure 4 can be described by the vector

vz(0) r - cos(f)
v= |v,(0)| = |r-sin(d) (11)
v:(0) v:(0)
with the z component given by
0 — fi 0<6— z
0a(0) = — Ly 2L (0= 9). or O<fmo<s
2 | B —0+9), for T<O-p<Z
(12)

and L being the active length in z direction.

The winding current is defined by a current space vector
with phase angle €. Thus, the current density in the winding
loop belonging to the k' phase (0 < k < m — 1) conducting
a current of phase shift ,, = 2wk/m is given by

ds
J=J— (13)
[ds]|
where J is defined as
J =J-cos(e — @pn) (14)
and ds is given by
ds — 2 ap (15)
007

The calculation of the current density J from a given phase
current and winding geometry is given in the Appendix.
B. 3D Lorentz Force and Torque

The Lorentz force on an infinitesimal conductor element
with volume dV' calculated by the triple product

L
AV = |(rdep x dr) - ds| = L= dordepdr. (16)
Qo
is given by
J -2« B
dF =J x B-dV = 96 dOrdodr  (17)

The torque generated by that element in respect to the origin
is given by

dT = v x dF. (18)



The torque and the force generated by a single phase is then
obtained by integration over one winding loop and one phase
belt and summation over all pole-pairs as

ppt2mhtm/m or
B —

A T "ox%xB
Ton =32 / / — =2 dfrdgdr
"=O0Rs epntamh-n/m § 41+ (ﬁ)
p (19)
and
@pht2mhtm/m o
J p—1 Ry If +=r
Fon =352 / _dfrdgdr,
h=0Ry epnt2rhn/m
" (20)

where the factor % results from the two-layer structure of the
winding. Summing-up over all m phases yields the total torque
and the total force

m—1
T = Ton 21)
k=0 =2t
and
m—1
F = F,, ok (22)
k=0 ‘pph:%
Evaluating (19) and (21) yields the torque
T,
T,
T = (23)

Brr2dr
T 2
R3 \/1+(p7)
where for p = 1 and m = 3 the transverse torque components
are

—4m sin(%)jL sin(e—~) 1}4

s

A Ry (5 »
~ 3V3JL?sin(e + ) (BT + Bg) rdr

T 24
8T )2 (24
and
R Ra(p | F
3v/3JL? cos(e + ) ! (BT + BG) rdr
T, = . (25)
8T 2
o1+ (%)
The transverse torque components vanish (T, = T, = 0) for

p = 1 only with even numbers of phases (m = 4,6,8...).
If p > 1, the transverse torque components vanish for any
m > 2.

Evaluating (20) and (22) yields a vanishing force F' = 0
for any combination of p and m.

C. One-Pole-Pair Three-Phase Winding

The transverse torque components 7, and T}, given by (24)
and (25) do not disappear for the one-pole-pair three-phase
winding, p = 1 and m = 3. In order to compare the amplitudes
of the drive torque 7’ and the transverse torque components
T, and T, the integral over the radius needs to be solved and
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Fig. 5. Machine cross-section and symbol definitions: diametrically magne-
tized cylindrical permanent magnet rotor inside a slotless stator.

therefore the radial dependency of the flux density has to be
considered.

The equations for the flux density B for p = 1 are
derived in [7] and the machine parameter definitions are given
in Figure 5. Simplifying the equations for the radial and
azimuthal components of the flux density by setting the relative
permeability of the permanent magnet and the stator core
Wr.pm ~ 1 respectively i, pe — 0o yields

. BremR? [ R?
» BremR2 R2

The torque generated by a three-phase winding (m = 3) is
obtained by evaluating (23), (24) and (25) to

Axy sin(e + )

T = |T,,cos(c+7) (28)

—T, sin(e — )

with .
. 3V3J Brem L? R?
Ty, = 222 rem= —1
327
o 3v/3J Brem L*RE
z 44

where K7 and K, are given by

K — 1o L+\/L?>+ 2R3
R VNG ey >

Ky (29)

K> (30)

L—\/L?+ m2R? 31)
L—\/L?+ 2R}

and

Ky =

TRy\/L? + m2R% — mR3+/L? + 72 R}
+  (2n2R2—L?)-log (”R4+ VLQJFWQRZ)

TR3++/L2+m2 Rg

L
R3

(32)
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Fig. 6. Ratio of Lorentz transverse torque sz to drive torque T, for the two-
pole, three-phase winding without iron stator core (R5 — oo) in dependency
of the geometry parameters active length L, winding inner radius R3 and
winding outer radius R4. The calculated value for the experimental winding
of Table I is shown with a circle, the measured value with a cross.

In order to produce a constant and maximum drive torque
the angle between the current space vector € and the rotor
orientation vy needs to be e —y = —m/2. For a motor rotating
with a rotational speed €, i.e. v = Qt and € = Qt — 7/2 the
transverse torque then alternates with a frequency of twice the
rotational speed 2().

As mentioned above, (28)-(32) are based on the Lorentz
forces generated within the winding and additional contri-
butions such as reluctance forces caused by the stator core
or armature reaction are disregarded. While the effect of
the reluctance force is significant, the influence of armature
reaction is minor. As known from (5) the result obtained for
the drive torque 7, remains unaffected when incorporating
the reluctance forces and can therefore be used to analytically
calculate the machine’s drive torque. However, the results for
the transverse torque T, and T, are only valid for iron-less
motor designs, i.e. for Rs — oo. Thus, for the verification
of the theoretical results, the torque for an iron-less design is
measured in Section VI. (28)-(31) remain unchanged for the
iron-less machine and K5 is given by

mRy +\/L?+ 7R3
mRs ++/L?+ 2R3

The ratio of transverse torque to drive torque Txy / T, is
plotted in Figure 6. It can be seen that high ratios of L/Ry,
i.e. long windings, and small ratios of R3/ Ry, i.e. thick-walled
windings, result in relatively high transverse torque. This is
rather unfavorable as the winding length is usually larger
than its outer diameter for common machines and therefore a
relatively high amount of transverse torque must be expected.

lim Ky = 272 log

R5—)OO

(33)

1V. 3D FEM CALCULATION FOR THE ONE-POLE-PAIR
THREE-PHASE SKEWED WINDING

In order to determine the transverse torque for machines
with an iron stator core, reluctance forces also need to be
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Fig. 7. Ratio of total transverse torque sz to drive torque T, for the
two-pole, three-phase winding with an iron stator core in dependency of the
geometry parameters active length L, winding inner radius 3 and winding
outer radius R4 = Rs. The calculated value for the experimental winding of
Table I is shown with a circle, the measured value with a cross.

considered. Therefore a magnetostatic FEM calculation is used
to determine the magnetic field generated by the winding.

The flux density caused by a single phase belt is calculated
using the commercial FEM software Comsol. Thereby, the
cylindrical stator core is modeled as a linear material with
a relative permeability p,, = 1000. The resulting field distri-
bution for the single phase belt is then further used to obtain
the total winding field of all three phase belts by superposition.

The total flux density in the motor is given by the superposi-
tion of the winding flux density and the flux density caused by
the permanent magnet for which again the analytical 2D model
from [7] is used. The force and torque is then obtained by
numerical integration of the Maxwell Stress Tensor evaluated
for the total flux density on the cylindrical surface with radius
Rs.

The FEM calculation yields F' = 0 for the force. The FEM
results for ratio of transverse torque to drive torque Txy / TZ are
shown in Figure 7. The ratios obtained from FEM calculations
and the ratios given by the analytical model are qualitatively
very similar: long and thick-walled windings result in high
transverse torque. Therefore, a transverse torque in the order of
30% to 40% of the drive torque or more needs to be expected
for most machine designs with skewed windings.

V. RHOMBIC WINDING

In this section the force and torque vectors produced by
the rthombic winding are analyzed. The analytical derivation
is again based on an evaluation of solely the Lorentz forces
within the winding, neglecting both reluctance forces and
armature reaction. As the analysis can be conducted in a
similar way as in Section III, it is presented in an abbreviated
form.

The winding scheme of the rhombic winding is shown in
Figure 8 for a single phase and pole-pair. Each phase consists
of two, series connected, coils sides per pole-pair (A; and A,



Fig. 8.

Winding scheme and 3D structure of the rhombic winding.

for phase A). A single winding loop exhibits the shape of a
rhombus, which is divided into loop segments for each side
denoted with the letters D, E, F and G.

The winding loop starting from angle ¢ can then be again
described by the vector v as defined in (11) however with the
z-component redefined as

(_1 + 9;S¢)7

L 1- 22,

vz(e) = 9 : ( 99_S¢)
(1+ f):

0—

(_1 - gf)v

where 6 is the winding opening angle, ¢, the phase belt

width and L the active length in axial direction.

The force and torque vectors generated by the rhombic
winding are then calculated similarly to (13)-(22). The force
F = 0 vanishes and the torque is

for Segment D

for Segment E
(34)
for Segment F

for Segment G

0
T = X 0 (35)
=T, - sin(e — puwy)
with
1 0 T Bad
TZ _ 2ij — COSépw s) Sin(pwfph)/ rrear
p'LU S

R3 1+ (%TST’)Z
(36)
Note that, contrary to the skewed winding, the transverse
torque components T, and T, disappear for the rhombic
winding also for p = 1 and only a drive torque 7', is produced.

VI. MEASUREMENTS
A. Measurement Setup

The measurements are performed on a granite measurement
platform. The permanent magnet is mounted on a rotational
stage. The stator is mounted on a multi component load cell
to measure the winding reaction force and torque components
resulting from the injected winding currents. A photograph of
the described assembly is shown in Figure 9.

A Spitzenberger&Spies DM3000 power supply is used to
generate the three-phase symmetric sinusoidal currents fed to
the star connected winding at a frequency of 1 Hz. The three-
phase currents are measured with current sensors (LEM LTS

Fig. 9. Winding test bench with the stator mounted on the piezoelectric load
cell and the permanent magnet fixed to the positioning stage.

6-NP). The current sensor output signals and force signals are
acquired by a National Instruments LabVIEW card at a sample
rate of 1 kHz.

The motor windings to be measured are expected to de-
liver a nominal drive torque of 28.8 Nmm for the skewed
winding and 38 Nmm for the rhombic winding. In order to
measure such small quantities a piezoelectric multi-component
dynamometer (Kistler 9256C1) is used, providing six force
measurements in pairs Fq and Fyo, Fy; and Fyo and I}
and F,o, and thereby permitting computation of the resulting
forces as well as two of the three torque components. The
force components are F, = Fy1 + Fpo, Fy = Fy1 + Fy
and F, = F,; + F,» and the two torque components are
Ty =a- (Fxl —ng) +b (le —Fzg) and TZ =C- (Fyl —
Fy2)+d- Fy, where the term d- F; accounts for the coordinate
transformation from the sensor to the stator coordinate system
(z,y,2) — (z,y + d,2). a, b and ¢ result from the load
cell geometry. The measurements are repeated for the winding
rotated by an angle of 90° to obtain the torque 7T,.

A Kistler type 5017 multichannel charge amplifier is used.
The amplifier’s internal second order low-pass filters are
used and the cut-off frequency is set to 300 Hz for all the
measurements.

In respect of amplitude, the forces and torques to be
measured are at the lower end of the measurement range of the
dynamometer. Hence, precursory quasi-static measurements
with test forces applied by a dial gauge and test weights were
performed to verify the correct behavior of the load cell. It
was concluded that the resulting forces and the torque T,
were measured with high precision, while the torque 7, was
deviating 30% and a recalibration based on the applied test
forces was needed.

As the generated charge produced by the small forces
is low and the charge amplifier operates with high gain,
signal drifting needs to be compensated. It is common in
piezoelectric force measurements that drift compensation is
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Fig. 10. Frequency response of the drift compensation FIR filter with an
attenuation of 0.06 dB at 1.0 Hz.
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Fig. 11. Measurement of stator reaction torque and forces for a skewed test
winding with an iron-less stator core (Rs — oco) for rotor position v = 0
and current phase € = t. The geometric data of the test motor is given in
Table 1.

made manually by subtracting a linear approximation of the
drift considering the beginning and the end of the measurement
when no forces are applied. The resulting force and torque
components are supposed to be offset-free for symmetric sinu-
soidal three-phase currents. This simplifies drift compensation
and the measured data can be processed off-line through a FIR
high-pass filter thereby eliminating the frequency components
below 1 Hz. The frequency response of the applied drift
compensation filter is shown in Figure 10.

B. Skewed Winding and Iron-Less Design

The geometric data for the p = 1 test motor is listed in
Table I. In order to allow for measurements without reluctance
forces an iron-less design is used. Sinusoidal three-phase
currents are injected with € = (¢ such that the resulting stator
field rotates in mathematically positive direction. Figure 11
shows the measured force and torque components for the
fixed rotor position v = 0 after signal drift compensation.
Measurements are repeated for rotor positions in steps of
10°. Another series of measurements is required to obtain the
torque component 7, by turning the winding on the measure-
ment setup by 90°. Figure 12 shows the combined resulting

100

50 4

Force (mN)

-50

—100

20 4 i -

Torque (Nmm)

Fig. 12. Combined measured torque and forces for a skewed test winding
with an iron-less stator core (R5 — oo) for € — v = —m /2. The geometric
data of the test motor is given in Table I.
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Fig. 13. Measurement of stator reaction torque and forces for a skewed test
winding mounted in a iron stator core with an inner radius Rs = R4 =
10 mm and an outer radius Rg = 15 mm for rotor position v = 0 and
current phase ¢ = t. The geometric data of the test motor is given in
Table 1.

force and torque components from these measurements for
€—~ = —7/2, where the maximum drive torque is generated.
It can be seen that the transverse torque alternates twice within
one rotation, i.e. with twice the rotational frequency. The
ratio of transverse torque to drive torque is expected to be
Tmy /Tz = 0.382 according to analytical calculation, which
is in correlation with the measurement that give a ratio of
0.385 (see Figure 6). However, the force components do not
disappear completely. The remaining forces make up to 10%
of the torque producing differential forces in the sensor. A
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Fig. 14. Measurement of stator reaction torque and forces for a rhombic
test winding with an iron stator for rotor position v = 0 and current phase
e = Qt. The geometric data of the test motor is given in Table II.

small pulsation of the drive torque 7, is also observed. These
discrepancies cannot result from non-symmetric currents, as
the current measurement error is smaller than 1% and the
amplitude deviation of the injected currents was less than 1%.
The errors may however be caused by the two layer structure
and the associated winding asymmetries, misalignment of rotor
and winding or harmonic distortion of the permanent magnet
field, which have not been taken into account in the modeling
above.

C. Skewed Winding with Iron Stator Core

The measurement shown in the previous section are repeated
with a cobalt iron stator core having an inner radius R =
R, = 10 mm and an outer radius Rg = 15 mm. The geometric
data is listed in Table I. Figure 13 shows the measured force
and torque components for € = Qt and the fixed rotor position
~ = 0 after signal drift compensation. The measurement shows
a drive torque amplitude of T, = 29.8 Nmm which is in
agreement to the calculated value of 28.8 Nmm. The measured
transverse torque amplitude is Tmy = 11.2 Nmm whereas
from the FEM calculation a value of 10.1 Nmm was expected.
The measured ratio sz / TZ = 0.37 and the calculated ratio
sz/Tz = 0.35 are drawn in Figure 7.

D. Rhombic Winding

The measurement result of the rhombic one-pole-pair test
winding with the geometry data given in Table II for a
fixed rotor position v = 0 and a rotating current vector is
shown in Figure 14. A drive torque of T. = 38.0 Nmm is
obtained from the calculation whereas TZ = 41.8 Nmm were
measured. Furthermore it is expected that no transverse torque
components 7 and T, are generated in a rhombic winding.
Indeed, a very small transverse torque of only 1.5 Nmm
was measured. A smoother drive torque 7, with much lower

TABLE I
SKEWED ONE-POLE-PAIR THREE-PHASE TEST MOTOR

Symbol Quantity Value
Ry Permanent magnet radius 7.1 mm
R3 Winding inner radius 8.0 mm
R4 Winding outer radius 10.0 mm
L Active length 27.5 mm
By Remanent flux density 1.1 T
N Turn number per Winding 24
TABLE II

RHOMBIC ONE-POLE-PAIR THREE-PHASE TEST MOTOR

Symbol Quantity Value
Ry Permanent magnet radius 7.1 mm
R3 Winding inner radius 9.25 mm
R4 = Rs Winding outer radius 11.25 mm
Rg Iron outer radius 15.0 mm
L Active length 26 mm
B Remanent flux density 1.1 T
N Turn number per Winding 32

0 Winding opening angle w/4
bph Phase belt width 2m/3

pulsation compared to the skewed winding was measured for
a constant angle € — v = —7 /2, which may be a merit of the
highly symmetric winding structure.

VII. CONCLUSION

Slotless windings, both skewed and rhombic, are widely
used in industrial motor applications. Despite their popularity,
their peculiarity of producing transverse torque components
in addition to the drive torque seems not to be well known.
Unwanted forces and transverse torque generally need to be
absorbed by the bearing system. Thus, when rotor dynamics
are of concern, e.g. when magnetic or gas bearings are
involved, a thorough evaluation of the winding behavior is
crucial. Therefore, a qualitative description of the force and
torque vectors is derived analytically based on the integration
of Lorentz forces within the winding. In order to quantitatively
estimate the amount of transverse torque, FEM calculations
are shown which also include the reluctance forces which
need to be considered when an iron stator core is present.
The calculations show, that for some configurations using
skewed windings transverse torque can occur. Measurements
verify the existence of transverse torques for the one-pole-pair
skewed winding, which alternates with twice the frequency of
the rotational speed. The calculations show that no transverse
torque is generated by the rhombic winding. This has also
been verified by measurements.

APPENDIX

The current density amplitude for skewed winding is given
by

S0

s N

where N is the number of winding turns per phase, 7 the phase
current amplitude and A the phase belt area perpendicular



to ds, which is calculated by the integral

T
Ry mp

Ry mp

1 1 1

Asz// v :7//77@@17« (38)
2 Ilds| 2 2

R3 ;TZ R3 % 1+ (;%)

L
AL = — (\/p?L2 + 72R2 — \[p?L2 + n2RZ) (39
1 mn(V% + Ry V@ +m 3) (39)

where the factor % results from the two-layer structure of the

winding and dV is the volume of an infinitesimal conductor
element given in (16).
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