

Intelligent Solid State Transformers (SSTs) A Key Building Block of Future Smart Grid Systems

Johann W. Kolar ... Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

The MEGA Cube Project

Johann W. Kolar & Gabriel Ortiz

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

ETH Zurich - Power Electronic Systems Laboratory

4/63

PES Research Scope

Industry Collaboration

6/63 —

Examples of Research Results

Ultra-Compact Systems Super-Efficient Systems MEGA Speed Drives

3- Φ **Boost-Type PFC Rectifier**

 P_0 = 10 kW U_N = 230V_{AC}±10% f_N = 50Hz or 360...800Hz U_0 = 800V_{DC}

f_P= 250kHz

 $\eta = 96.2\% @ P_0$ $THD_I = 1.6\% @ P_0$ $\gamma = 3kW/kg$

Mains Behavior @ 400 Hz/800 Hz

9/63 —

Bidirectional Super-Efficient 1- Φ **PFC Mains Interface**

Hardware Testing to be finalized in November 2011

Employs NO SiC Power Semiconductors -- **Si SJ MOSFETs only**

10/63 —

Bidirectional Super-Efficient 1- Φ **PFC Mains Interface**

Employs NO SiC Power Semiconductors -- Si SJ MOSFETs only

11/63

MEGA Speed Drive Systems

World Record !

100W @ 1'000'000 rpm

- µm-Scale PCB Drilling
- Dental Technology
 Laser Measurement Technology
 Turbo-Compressor Systems
- Air-to-Power
- Artificial Muscles
- Mega Gravity Science

Abstraction of Power Converter Design

ETH Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

Technology Sensitivity Analysis Based on η-ρ-Pareto Front

Sensitivity to Technology Advancements
 Trade-off Analysis

14/63 —

Outline

- Introduction to SST Concept
 Applications of SSTs
 Overview of SST Research since 2001
- **Details on the MEGA Cube**
- **Conclusions / Outlook**

15/63 —

Introduction to Solid State Transformer Concept

50/60 Hz Transformer

Solid State Transformer

50/60Hz vs. SST Operating Frequencies in the kHz Range

Size/Weight Reduction

Higher Operating Frequency Reduces Transformer Size/Weight

Volume vs. Frequency of Transformers Realized in Previous Research Scaled to 1[MW]

Reactive Power Control

UPS Operation

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

19/63 —

20/63 —

Applications of the Solid State Transformers

Traction / Locomotives

- Reduced Weight/Size
 Increased Efficiency
 Reduced Line Filtering

SST Replacing the Input Transformer of a Locomotive

Wind Power

 Reduced Weight/Size
 Increased Efficiency of Power Transmission

▲ SST in Off-Shore Wind Farms

Tidal Power

Smart Grid Scheme

25/63 —

Overview of SST Research

over the last 10 years

Introduction to
The MEGA Cube

Traction Applications

Wind / Tidal Power

Smart Grids

ETH

The MEGA Cube @ ETH Zurich

30/63 —

Details on The MEGA Cube

Medium-Voltage Side 12kV - 20kHz

High-Voltage IGBTs

- Not Designed for Medium-Frequency Operation
- Zero-Current-Switching Schemes Required

Dual Active Bridge DC/DC Converter

- ▶ Resonant
- Capacitor and Inductor in Series with Transformer
- Low Switching Losses in MV and LV Bridges

- ► Triangular Current
- Only Inductor in Series with Transformer
- High Switched Currents on LV Side

Resonant vs. Triangular Current DAB

- ▶ Resonant
- ZCS on LV and MV Sides
- Low Controllability of Transferred Power

- ZCS only on MV Side
- Duty Cycle Power Flow Control

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich 33/63 —

Triangular Current DAB

- **Enables ZCS Only on MV Side**
- All Current Turn-Off Events Shifted to LV Side

Shown for Power Transfer from MV to LV Side

MV Switch Realization - 4.5 kV IGBT

► Large Tail Current Despite ZCS

MV Switch Realization - 1.7 kV IGBT

- **•** Testbenches for NPT and PT 1.7kV IGBTs
- ► Massive ZCS Loss Reduction

▲ 1.7kV PT IGBT NPC Module

ZCS Testing @ 1kV DC-Link 150A Peak

Enhancement - Saturable Inductor

Enhancement - Saturable Inductor

40/63 —

Details on The MEGA Cube

Low-Voltage Side 1.2kV - 20kHz

DAB with Triangular Current

- High Currents Switched / Conducted on LV side
- ► ZCS on MV Side

Shown for Power Transfer from MV to LV Side

Hybrid LV Switch

- ► Low Conduction Losses → IGBT
- ► Low Switching Losses → MOSFET

Circuit Schematic and Waveforms of LV Side Hybrid MOSFET/ IGBT Full-Bridge

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

43/63 —

Module-Based Hybrid Switch

- IGBT Module: Infineon 600V/600A Econopack
- MOSFET: Infineon 600V/70A "CoolMOS"

▲ Hybrid Switch Based on IGBT Bridge Leg Module ▲ Hybrid Switch Layout and Waveforms; $t_{ON,MOSFET}$ = 8us / $t_{OFF,IGBT}$ = 17us

> Interleaved Hybrid Switch

- ► IGBT : Infineon 600V/75A Trench Field-Stop
- MOSFET: Infineon 600V/70A "CoolMOS"

44/63

▲ Testbench for Interleaved Hybrid Switch ▲ Hybrid Switch Layout and Waveforms; $t_{ON,MOSFET}$ = 8us / $t_{OFF,IGBT}$ = 17us

Module-based vs. Interleaved Hybrid Switch

► Total Losses for a 166 kW Full-Bridge

▶ Mesh with Different $t_{ON,MOSFET}$ and $t_{OFF,IGBT}$ Showing Optimal Selection

LV DC (1.2kV)

400V

Modular LV-Side Full-Bridge

- ▶ 6 Modules 6 x 166 kW
- Hybrid Switch for Low Conduction/Switching Losses

▲ Testbench for Interleaved Hybrid Switch

▲ Structure of the Modular LV Side Comprising Hybrid Switch

Hybrid Fullbridge 3

Hybrid Fullbridge 5

Hybrid Fullbridge 1-

▶ 6 Modules

Module 3

Module 1

Module 2

Module 4

Module 5

► LV Side

Parallel/Series Connection of 400V **Full Bridges**

MV Side

Series Connection of NPC Bridges

Module 6

ETH Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

48/63 —

Details on The MEGA Cube Transformer 20kHz

How Many MF Transformers?

► Six Transformers (One per Module) **OR** One Transformer with 6 LV/MV Windings?

▲ MF Transformer - Link of MV NPC Module and LV Hybrid Switch Full-Bridge

Option 1: Shell-Type

- E-Shape Based on Magnetic Core
- Vitroperm 500F / Heatsinks HV Litz Cable / LV Foil

- Air-Cooled

▲ Shell-Type Transformer with HV Cable Winding Designed for 1MW/20kHz

Option 2: Matrix-Type

- Several Cores / Each Realizing a Transformer
- ► Realization of the Turns **Ratio Through Parallel/** Series Connection
- Vitroperm 500F / Heatsinks
- HV Litz Cable / LV Foil
- Air-Cooled

▲ Matrix-Type Transformer with HV Cable Winding Designed for 1MW/20kHz

MF Transformer Split up to 6 Modules

- Linking MV NPC Module and LV Hybrid-Switch Full-Bridge Modules
 Isolation + Voltage Adaptation

Block Diagram of High-Power DC-DC Converter Utilizing Modular LV and MV Converters

Transformer Optimization

- ▶ Parameter 1: Core Material
- ► Parameter 2: LV Winding Number of Turns
- ► Selected Design:
- 2 Turns LV Winding Stacked Ferrite Cores

Assembled Transformer

- 166kW / 20kHz
 Ferrite N87
- ▶ 9500 Strands Litz Wire
- ► PTFE Isolation Bobbin
- ► Forced Air Cooled
- Efficiency: 99.75%
 Power Density: 31kW/dm³

166kW / 20kHz Transformer

Preventing Core Saturation

Flux Density Transducer – Magnetic Ear

- Closed-Loop Control of the Flux Density in the Main Core
- Eliminate Problems of DC Magnetization

56/63

57/63 —

— Conclusions / Outlook —

58/63

Conclusions

- SST Technology Attractive for Traction / Renewable Energy / Smart Grids High-Power MF DC-DC Converters are a Key Component for SSTs
- 1MW / 20kHz MV to LV MEGA Cube under Construction @ ETH Zurich
- With Available Semiconductors \rightarrow ZCS required on MV side
- Medium Voltage + Medium Frequency \rightarrow Modular Arrangement
- **Major Opportunities for WBG Power Semiconductors**

60/63 —

61/63

Outlook

- Modeling/Simulation of ZCS Behavior High Performance Cooling Systems Magnetics Thermal Management

- High RMS Currents of Capacitors
- Partial Discharge Testing
- Common Mode Voltages of Stacked MV Modules
- **Alternative Core Materials**
- Winding Resonances
- High-Current Medium-Frequency Test Setup

•••

62/63 —

Thank You!

Questions?

