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Abstract—Slotless windings, skewed and rhombic, are widely
used in industry. Beside the drive torque, possibly undesired
transverse torques and forces are generated, which have not been
analyzed previously. An analytical derivation of the torque and
force components in all three directions is detailed in this paper
for the skewed winding. It is shown that for some winding config-
urations alternating transverse torque components are generated,
which may compromise stable operation in applications where
for example magnetic or gas bearings are involved. Moreover the
windings are analyzed with regard to a potential use as active
magnetic radial bearings in high-speed applications. Finally,
measurements are presented to verify the theoretical results.

I. INTRODUCTION

Slotless windings are widely used for small sized electric
motors in industrial applications ranging from a hundred
milliwatts to a few hundred watts [1]. The main advantages
of a slotless design are the absence of cogging torque, the
elimination of losses caused by slot space harmonics, the low
winding inductance. For the last two reasons it is also an
excellent choice for high-speed motors [2].

An overview of different types of slotless windings is given
in [3] and [4]. Commonly used winding types are the skewed
type and the rhomic winding. As can be seen from Figure 1
both windings exhibit complex three dimensional structures
with two layers overlapping. This can result in undesirable
transverse torque and force components beside the intended
drive torque in axial direction, even for perfect alignment and
symmetry of the winding. In some high-speed applications
where rotordynamics must be considered, e.g. when mag-
netic bearings or gas bearings are involved, these transverse
torque components have to be either avoided by choosing an
appropriate winding type, configuration and geometry or at
least exactly quantified and incorporated into the rotordynamic
model.

The magnetic field in the airgap required for the analysis of
the torque and force components has been studied in [5], [6]
and [7]. Winding factors for the harmonic field components
resulting in alternating drive torque have been analyzed in [4].
However, no analysis or measurement of the transverse torque
and forces components have been reported in literature.

(a) (b)
Fig. 1. Skewed winding (a) and rhombic winding (b)

In this paper torque and force calculations for the skewed
type winding are derived. The most common configuration, the
two-pole, three-phase winding is analyzed in detail, including
possible force generation for an active magnetic bearing. A
winding test bench is built and the theoretical results are
verified by measurements.

II. DERIVATION OF FORCE AND TORQUE FOR THE
SKEWED WINDING

A. Magnetic Field Distribution

According to [5] the flux density in the airgap of a slotless
permanent-magnet machine can be described by Fourier series
for both the radial and the azimuthal field components as

Br =

∞∑
n=1

B(n)
r cos(nqθ + δ) (1)

Bθ =

∞∑
n=1

B
(n)
θ sin(nqθ + δ), (2)

where q is the number of pole pairs of the rotor, δ the load
angle and B

(n)
r and B

(n)
θ are the Fourier coefficients of the

nth harmonic. The field in axial direction is assumed to be
Bz = 0.

It is well known that for machines driven with symmetric si-
nusoidal currents only the fundamental component contributes
to a constant torque. Therefore, from a design point of view,
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Fig. 2. Winding scheme and 3D structure of the skewed type winding.

the flux density of an optimal machine only consists of the
fundamental component, and hence for the winding analysis
carried out in this paper it is assumed that that the geometry
of the rotor and the permanent-magnets is chosen such that
all the harmonic field components vanish. Indeed for the
q = 1 pole pair machine a purely fundamental field distribution
is achieved by a diametral magnetization direction in the
cylindrical permanent-magnet [7].

The time varying fundamental field in the airgap for a
rotor rotating with speed Ω is then described in cylindrical
coordinates by

Br = B̂r(r) · cos(qθ − qΩt+ δ) (3)
Bθ = B̂θ(r) · sin(qθ − qΩt+ δ) (4)

To derive the force and torque components in cartesian coor-
dinates is described by

B =

Br · cos(θ)−Bθ · sin(θ)
Br · sin(θ) +Bθ · cos(θ)

0

 . (5)

B. Winding Definition

A winding is defined by the number of phases m ≥ 3 and
the number of pole pairs p. It is to be noted that the pole pair
number of the rotor q does not necessarily need to be equal to
pole pair number of the winding p. For each pole a winding
zone spreads over an angle ϕ/p = 2π/mp with ϕ = 2π/m
being the electrical phase shift from one phase to the adjacent
phase (Figure 2).

For m = 1 and m = 2 a different winding descriptions
would be necessary. However, because no constant torque can
be achieved with a one-phase winding, it is not considered
further. The two-phase winding has a very low utilization
factor when having only two windings situated π/2 to each
other, because then only half of the volume is used for the
winding. However introducing windings connected in series
on the opposite sides in the unused space to overcome this
drawback results then in an m = 4 phase winding, which is
then covered by the given definition.

A single winding loop starting from angle φ as depicted in
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Fig. 3. Coordinate system definition and winding loop parametrization.

Figure 3 can be described by the vector

v =

r · cos(θ)
r · sin(θ)
z(θ)

 (6)

with the z component given by

z(θ) = −L
2

+
pL

π
·

{
(θ − φ), for 0 < θ − φ < π

p

( 2π
p − θ + φ), for π

p < θ − φ < 2π
p
(7)

and L being the winding hight in z direction.
The current density in the winding loop belonging to a phase

conducting a current of phase shift ϕ is given by

J = J
ds

‖ds‖
(8)

where J is defined as

J = Ĵ · cos(qΩt− ϕ) (9)

and ds is given by

ds =
∂v

∂θ
dθ. (10)

C. 3D Force and Torque

The Lorentz force on a infinitesimal conductor element with
volume dV calculated from the triple product

dV = |(rdφ× dr) · ds| = pL

π
dθrdφdr (11)

is given by

dF =
1

2
J ×B · dV =

J · ∂v∂θ ×B

2

√
1 +

(
πr
pL

)2
dθrdφdr (12)

where the factor 1
2 results from the two layer structure of the

winding. The torque generated by that element in respect to
the origin is given by

dT = v × dF . (13)



The torque and the force generated by a single phase is then
obtained by integration over one winding loop and one phase
zone and summation over all pole pairs as

Tph = J

p−1∑
k=0

R4∫
R3

ϕ+2πk+π/m
p∫

ϕ+2πk−π/m
p

φ+ 2π
p∫

φ

v × ∂v
∂θ ×B

2

√
1 +

(
πr
pL

)2
dθrdφdr

(14)
and

Fph = J

p−1∑
k=0

R4∫
R3

ϕ+2πk+π/m
p∫

ϕ+2πk−π/m
p

φ+ 2π
p∫

φ

∂v
∂θ ×B

2

√
1 +

(
πr
pL

)2
dθrdφdr,

(15)
where R3 and R4 are the winding inner and the winding outer
radius (see Figure 4). Summing up over all m phases yields
the total torque and the total force

T =

m−1∑
k=0

Tph

∣∣∣
ϕ= 2πk

m

(16)

and

F =

m−1∑
k=0

Fph

∣∣∣
ϕ= 2πk

m

. (17)

D. Solution for p = q

Evaluating (14) and (16) yields the the torque

T =


Tx
Ty

−4m sin( πm )ĴL sin(δ)

π

R4∫
R3

B̂rr
2dr√

1+( πrpL )
2

 (18)

where for p = 1 and m = 3 the transverse torque components
are

Tx =
3
√

3ĴL2 sin(2Ωt− δ)
8π

R4∫
R3

(
B̂r + B̂θ

)
rdr√

1 +
(
πr
pL

)2
(19)

and

Ty =
3
√

3ĴL2 cos(2Ωt− δ)
8π

R4∫
R3

(
B̂r + B̂θ

)
rdr√

1 +
(
πr
pL

)2
. (20)

For any other combination of m and p > 1 the transverse
torque components vanish (Tx = Ty = 0).

Evaluating (15) and (17) yields a vanishing force F = 0
for any combination of p and m.

E. Two-Pole Three-Phase Winding

For the two-pole three-phase winding , q = p = 1, m = 3
the transverse torque components Tx and Ty given by (19)
and (20) do not vanish but alternate with a frequency of twice
the rotational speed. In order to compare the amplitudes of
the drive torque Tz and the transverse torque components Tx
and Ty the integral over the radius needs to be solved and
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Fig. 4. Machine cross-section and symbol definitions: diametrically magne-
tized cylindrical permanent-magnet rotor inside a slotless stator [7].

therefore the radial dependency of the flux density has to be
considered.

The equations for the flux density B for q = 1 are derived
in [7] and the parameter definitions are given in Figure 4.
Simplifying the equations for the radial and azimuthal com-
ponents of the flux density by setting the relative permeability
of the permanent-magnet and the stator back iron µr,pm ≈ 1
respectively µr,Fe →∞ yields

B̂r(r) =
BremR

2
1

2R2
4

(
R2

4

r2
+ 1

)
(21)

B̂θ(r) =
BremR

2
1

2R2
4

(
R2

4

r2
− 1

)
. (22)

The torque generated by a m = 3 phase winding is obtained
by evaluating (18), (19) and (20) to

T =


3
√

3ĴBremL
2R2

1 sin(2Ωt−δ)
32π ·K1

3
√

3ĴBremL
2R2

1 cos(2Ωt−δ)
32π ·K1

−3
√

3ĴBremL
2R2

1 sin(δ)
4π4 ·K2

 (23)

where the K1 and K2 are given by

K1 = log

(
L+

√
L2 + π2R2

3

L+
√
L2 + π2R2

4

· L−
√
L2 + π2R2

4

L−
√
L2 + π2R2

3

)
(24)

and

K2 = 1
R2

4

[
πR4

√
L2 + π2R2

4 − πR3

√
L2 + π2R2

3

+ (2π2R2
4 − L2) · log

(
πR4+

√
L2+π2R2

4

πR3+
√
L2+π2R2

3

)]
. (25)

A high ratio of L/R4 and R3/R4 results in windings
producing relatively high transverse torque Txy compared to
the drive torque Tz as can be seen from Figure 5. This is
rather unfavorable since for common machines the winding
length is usually larger than its outer diameter leading to a
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Fig. 5. Ratio of transverse torque Txy to drive torque Tz for the two-pole,
three-phase winding in dependency of the geometry parameters active length
L, winding inner radius R3 and winding outer radius R4. The calculated
value for the experimental winding of Table I is shown with a cross, the
measured value with a circle.

the transverse torque in the area of 10% to 20% of the drive
torque or more.

III. FORCE GENERATION FOR ACTIVE MAGNETIC
BEARINGS

The skewed type winding is a promising candidate for an
active magnetic bearing for high-speed applications due to
its low inductance and the relatively low negative stiffness
resulting from the large magnetic air gap [8]. There are
many configurations for generating a net force; e.g. for the
configuration p = q + 1 the torque always vanishes: T = 0.
The force for this configuration and m ≥ 3 is obtained from
(15) and (17) as

F = −
2mJL sin

(
π
m

)
π

R4∫
R3

(
B̂r + B̂θ

)
rdr√

1 +
(
πr
pL

)2

cos(δ)sin(δ)
0

 . (26)

For q = 1 the simplifications for the flux density B made
in section II-E can be used to calculate the integral in (26)
yielding

F = −
m sin( πm )K3JLR

2
1Brem

π

cos(δ)sin(δ)
0

 (27)

where K3 is defined as

K3 = log

(
2L+

√
4L2 + π2R2

3

2L+
√

4L2 + π2R2
4

· 2L−
√

4L2 + π2R2
4

2L−
√

4L2 + π2R2
3

)
.

(28)

Fig. 6. Winding test bench with the stator mounted on the piezoelectric load
cell and the permanent-magnet fixed to the positioning stage.

IV. MEASUREMENTS

A. Measurement Setup

The measurements are performed on a granite measure-
ment platform. The permanent-magnet is mounted on a xyz-
translation stage with an additional rotational stage allowing
for accurate positioning and rotation of the magnet. The stator
is mounted on a multi component load cell to measure the
winding reaction force and torque components resulting from
the injected winding currents. A photograph of the described
assembly is shown in Figure 6.

A Spitzenberger&Spies DM3000 power supply is used to
generate the three-phase symmetric sinusoidal currents fed to
the star configured winding at a frequency of 1 Hz. The three
phase currents are measured with current sensors (LEM LTS
6-NP). The current sensor output signals and force signals are
acquired by a National Instruments LabVIEW card at a sample
rate of 1 kHz.

The motor winding to be measured is expected to deliver a
nominal drive torque of 30 mNm. In order to measure such
small quantities a piezoelectric multi component dynamometer
(Kistler 9256C1) is used, providing six force measurements
in pairs Fx1 and Fx2, Fy1 and Fy2 and Fz1 and Fz2, and
thereby allowing to compute the resulting forces as well as
two of the three torque components. The force components are
Fx = Fx1 +Fx2, Fy = Fy1 +Fy2 and Fz = Fz1 +Fz2 and the
two torque components are Ty = a·(Fx1−Fx2)+b·(Fz1−Fz2)
and Tz = c · (Fy1 − Fy2) + d · Fx, where the term d · Fx
accounts for the coordinate transformation from the sensor to
the stator coordinate system (x, y, z)→ (x, y+d, z). a, b and
c result from the load cell geometry. To obtain the torque Tx
the measurements are repeated for the winding rotated by an
angle of 90◦.

A multichannel charge amplifier from Kistler of type 5017 is
used. For all the measurements the amplifier’s internal second
order low-pass filters are used and the cut-off frequency is set
to 300 Hz.
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Fig. 7. Frequency response of the drift compensation FIR filter with an
attenuation of 0.056 dB at 1.0 Hz.

To verify correct behavior of the load cell, quasi-static
measurements of test forces applied by a dial gauge and test
weights were carried out. It was concluded that the resulting
forces and the torque Ty was measured with high precision,
while for Tz the measured values were 32% lower. Therefore
a correction factor had to be introduced for the calculation of
Tz .

As the generated charge produced by the small forces
is low and the charge amplifier operates with high gain,
signal drifting needs to be compensated. It is common for
piezoelectric force measurements, that drift compensation is
done manually by subtracting a linear approximation of the
drift considering the beginning and the end of the measurement
when no forces are applied. For symmetric sinusoidal three
phase currents the resulting force and torque components are
supposed to be offset-free. This simplifies drift compensation
and the measured data can be processed off-line through a
FIR high-pass filter and therewith eliminating the frequency
components below 1 Hz. The frequency response of the
applied drift compensation filter is shown in Figure 7.

B. Two-Pole Three-Phase Winding

The geometric data for the q = p = 1 test motor is listed
in Table I. Sinusoidal three phase currents are injected such
that the resulting stator field rotates in mathematically positive
direction. Figure 8 shows the measured force and torque
components for the rotor position θ = 0 after signal drift
compensation. Note that for the rotor fixed at position θ = 0
and the stator field rotating in positive direction the load angle
is δ = Ωt. Measurements are repeated for rotor positions in
steps of 10◦. Another series of measurements is furthermore
required to obtain the torque component Mx by turning the
winding by 90◦. Figure 9 shows the combined resulting
force and torque components from these measurements for
a load angle δ = −π/2, where the maximum drive torque
is generated. It can be seen that the transverse torque rotates
with twice the rotational speed. For the tested winding the
ratio of transverse torque to drive torque is expected to be
Txy/Tz = 0.21, however the measurement shows a different
ratio with 0.32, see Figure 5. Also the force components do
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Fig. 8. Measurement of stator reaction torque and forces for the one pole pair
three-phase test motor with injected stator currents at rotor position θ = 0 .

TABLE I
TWO-POLE THREE-PHASE TEST MOTOR

Symbol Quantity Value
R1 Permanent-magnet radius 7.1 mm
R3 Winding inner radius 8.0 mm
R4 Winding outer radius 10.0 mm
R5 Iron outer radius 15.0 mm
L Active length 27.5 mm
Br Remanent flux density 1.1 T
N Turn number per Winding 24

not vanish completely. These non-vanishing forces are up to
20% of the torque producing differential forces in the sensor.
It can be excluded that these discrepancies result from not
perfectly symmetric currents, as the current measurement error
is smaller than 1% and the amplitude deviation of the injected
currents was less than 1%. The errors however may be caused
by misalignment of rotor and stator. The centering of the rotor
in the axial direction is satisfactorily achieved by minimizing
the resulting force in z-direction. However the resulting forces
in x- and y-directions are very sensitive to the positioning of
the rotor in these directions. Moreover, minimizing the forces
for a specific angular rotor position did not yield satisfying
results for other angular rotor positions. Another source for
the non-vanishing forces might be the two layer structure and
therewith associated asymmetries of the winding which has
not been accounted for in the above modeling.

C. Active Magnetic Bearing Winding

Measurements have also been performed for a slotless type
active magnetic bearing winding with a p = 2 pole pair skewed
winding and a q = 1 pole pair rotor. The geometry is chosen
the same as for the one pole pair test motor (Table I), except
for the winding pole pair number. The measurement procedure
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Fig. 9. Combined measured torque and forces for the one pole pair three-
phase test motor for a constant load angle of δ = −π/2.
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Fig. 10. Measurement of stator reaction torque and forces for the slotless
magnetic bearing at θ = 0.

is also exactly the same. However the phase currents needed
to be set much lower not to overdrive the charge amplifier,
which configuration was not changed. Figure 10 shows the
measurement for a fixed rotor position at θ = 0 while the
three phase currents are applied. It can be seen that forces
can be generated in both x- and y-direction with generating
only very small amount of undesired torque or an axial force.
Also, thecalculated force amplitude values are in very good
agreement with the measured values. The calculated force

amplitude for a peak current of 1 A resulting in a current
density of Ĵ = 1.43 A/mm

2 is 0.72 N, while the measured
value range is 0.69 N to 0.71 N.

V. CONCLUSION

The skewed type winding with three phases and one pole
pair q = p = 1 is widely used in industrial motor applications.
Despite its popularity, its peculiarity to produce transverse
torque components in addition to the drive torque seems not
to be well known. However when rotor dynamics are of
concern, e.g. when magnetic or gas bearings are involved,
a thorough evaluation of the winding behavior is crucial.
Therefore analytical expressions for the 3D force and torque
are presented in this paper. For the two-pole winding, the
measurements verify the existence of transverse torques with
twice the frequency of the rotational speed, however with even
a higher transverse to axial torque ratio than calculated. For
the magnetic bearing winding the theoretical results are in
very good agreement with the measurements. This proves the
feasibility of using such a winding for a magnetic bearing.
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