Automotive Power Electronics Roadmap

J. W. Kolar, ETH Zurich, Switzerland, M. März, Fraunhofer IISB, Germany, and E. Wolfgang, Germany Summary authored by S. D. Round, ETH Zurich, Switzerland

Automotive applications for power electronics is increasing rapidly due to the demand for hybrid and future fuel-cell powered vehicles. The power electronic systems are not only required for driving the vehicle (Fig. 1) but are also used to interface energy storage components and to supply high power auxiliary systems such as active suspension, electric valves and air conditioning units. The automotive industry has specific requirements for its power electronic systems such as a compact design, high reliability, long life time and an extremely low cost to power ratio. The systems are further required to operate over a wide ambient temperature range and with liquid cooling temperatures of typically 105°C. In a study from the USA FreedomCAR project, it is projected that the required cost of the power electronic systems has to reduce by a factor of three until the year 2020.

The task of the Automotive Roadmap Committee was to clarify which technologies are needed to achieve the performance and cost targets of the automotive industry. The road mapping effort focused on three systems as circled in Fig. 1:

- 1. a non-isolated dc-dc converter, in the 40 to 100 kW power range, that can be used as a fuel cell interface,
- 2. an ac-dc inverter that is integrated into the machine housing of a hybrid drive system (since an

integrated solution provides the greatest cost reduction potential), and,

3. an isolated dc-dc converter to provide bidirectional power flow between the high voltage bus and the 14 V accessory power system, where the required power range is 1 to 3 kW.

The main outcomes of the road mapping exercise are that the drive inverter cost target could potentially be meet if the power electronics is integrated, and that the maximum achievable power density of the non-isolated dc-dc converter and the isolated dc-dc converter is 50 kW/liter and 10 kW/liter respectively.

The road mapping process utilized a bottom-up approach. Here, mathematical descriptions for the electrical, thermal, packaging and magnetic components are developed. Using these descriptions a component technology space is formed. By using the specifications, topologies, and operating parameters the component space can be optimally mapped into a system performance space, which gives system performance measures such as efficiency, power density and costs. Exploring the performance, and then undertaking a reverse mapping from this new point back into the component space, provides information on how the technologies must be developed to achieve the new desired system performance.

Fig. 1 Power electronic key systems for the cars of tomorrow. The three considered systems in the automotive power electronics road mapping exercise are encircled in yellow.

Automotive Power Electronics Research Roadmap Initiative

Coordinators

Johann W. Kolar ETH Zurich *Martin März* Fraunhofer IISB

supported by

Eckhard Wolfgang and Roadmap Team Automotive

Outline

- **General Considerations**
- Si / SiC Inverter
 Non-Isolated DC/DC Converter
 Isolated DC/DC Converter
 High Temperature Gate Drive
 Optimization

ЕТН Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Power Electronic Key Systems for the Cars of Tomorrow

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Power Electronic Systems Laboratory

Fraunhofer Institut Integrierte Systeme und Bauelementetechnologie

Inverter

Topologies DOF for Optimization Technologies

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Electric Drive for Hybrid Traction

Alternative Topologies

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ЕТН

Fraunhofer Institut

Institut Integrierte Systeme und Bauelementetechnologie

Z-Source Inverter

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

DOF for Optimization

Optimization on System Level

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Fraunhofer Institut

Integrierte Systeme und Bauelementetechnologie

Traction Drive Inverter

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Traction Drive Inverter

Total Material Costs

Results

- IGBT is the preferred technology for traction voltages above about 150V
- Total inverter cost, package volume, and losses decrease with increasing traction voltage when using IGBTs
- The inverter becomes considerably less expensive in the case of a constant traction voltage (k_v=1)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Electric Drive for Hybrid Traction

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Power Electronic Systems Laboratory

Fraunhofer Institut Integrierte Systeme und Bauelementetechnologie

Fraunhofer Institut

Integrierte Systeme und Bauelementetechnologie

Comparative Evaluation of SiC for DC/DC Converter

12

Switching Transient Shaping

Fraunhofer Institut Integrierte Systeme und Bauelementetechnologie

Minimization of Parasitics LeCroy U_{DS} 100V/Div I_{DS} 10A/Div Passive Damping ► Gate Drive / Active Damping § 50 ns 1.00 V 4 50 ns 100 V **PCB Damping Layer** 50ns/Div LeCroy U_{DS} 100V/Div C_{Lboost} $C_{j,D}$ L_{wire} $L_{boost} I_{DS} \leftarrow$ D_1 C_{in} V_{in} V_{out} 'oss $V_{\scriptscriptstyle DS}$ I_{DS} V_{gate} 10A/Div A 50 ns 100 V 🔓 50 ns 1.00 V L_{wire} ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Without Damping Layer

Thermo-Mechanical Reliability

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Fraunhofer Institut Integrie

Institut Integrierte Systeme und Bauelementetechnologie

Thermo-Mechanical Reliability 250 Source: Lu / VPEC Temperature (°C) 200 **SiC Power Device Assembly Low Temperature Sintered Silver** 150 **Die Attachment** 100 ► Thermal Cycling 50°C 250°C ► 6'000 TC Survived 50 10 5 0 15 20 Time (mins) = Al₂O₃ DBC 45 · AIN DBC 40 Bonding strength (MPa) 35 **Die-Shear Test** 30 25 20 SiC power device 15 Sintered silver Coated silver or gold 10 Coated nickel **DBC** copper 5 **Direct-Bond-Copper** Al₂O₃ or AIN ceramic base n DBC copper 500 1000 2000 4000 6000 0 8000 Number of thermal cycles ЕТН Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Non-Isolated DC/DC Converter

—— Overlapping Input/Output —— Voltage Ranges

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich **Power Electronic Systems** Laboratory

Fraunhofer Institut Integrierte Systeme und Bauelementetechnologie

Traction Voltage Converter

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Bi-Directional DC/DC Converters for Overlapping Voltage Rages

Cascaded Boost-Buck Converter

Cascaded Buck-Boost Converter

Large Passive Components Count

- 3 Capacitors
- 2 Inductors

Minimum Passive Components Count
• 2 Capacitors

• 1 Inductor

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Cascaded Buck-Boost Converter

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Converter Module Hardware

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Overall Efficiency vs. Output Power

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Ultra-Compact Converter Module

Isolated High Temperature SiC J-FET Gate Drive Circuit

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Phase Difference Circuit

Proposed by D.C. Hopkins, Univ. at Buffalo, USA

- ► Vs Product: Bipolar transformer output voltage
- ► Capacitor C_g to perserve JFET gate voltage during MOSFET S₁ or S₂ Off-Time

Advantages and Drawbacks

- No Duty-Cycle limitation (static Turn-Off)
- High switching speeds (MOSFET half-bridge)
- High complexity
- High costs

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Edge-Triggered Driving Circuits

Size of Capacitor C_g

- Large capacitances reduce switching speed
- Large capacitances cause significant losses
- Small capacitances limit Off-Time

Second winding due to auxiliary switch U_{as} limits

Advantages and Drawbacks

- Moderate Active Component Count
- High Switching Speeds
- Large Duty-Cycle Range (1% ... 100%)
- (Off-Time limited by capacitor size)
- special pulse pattern to provide negative bias useable

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Power Electronic Systems Laboratory

Fraunhofer Institut Integrierte Systeme und Bauelementetechnologie

Experimental Results

Edge-Triggered Circuit shows Excellent Performance

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Isolated DC/DC Converter

____ Dual Active Bridge Magnetically Integrated Current Doubler

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Prototype of the Dual Active Bridge

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Fraunhofer Institut

Integrierte Systeme und Bauelementetechnologie

Experimental Results

Efficiency Increased by 10% at 2kW Output Significantly Higher Efficiency at Partial Load

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Isolated DC/DC Converter

____ Magnetically Integrated _____ Current Doubler

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Fraunhofer Institut

Integrierte Systeme und Bauelementetechnologie

Current Doubler with Integrated Magnetics

Power Electronic Systems Laboratory

Fraunhofer Institut Integrierte Systeme und Bauelementetechnologie

Enabling Technologies Identified in Copenhagen Roadmap Meeting

- Advanced Cooling of Power Semiconductors
- Increased Thermal Cycling Capability / Increased ΔT_{i-c}
- Advanced Packaging Materials
- Advanced Cooling of Passives
- High Current Low HF Loss Interconnection Technologies
- Local EMI Shielding / Filtering
- Integration of Gate Drives and Sensors etc.
- Reliability / Robustness Test Procedures
- Multi-Domain Design / Optimization Platform

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

System Optimization

Pareto-Optimal Design Technology Vectors Sensitivities

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich **Power Electronic Systems** Laboratory

Fraunhofer Institut Integrierte Systeme und Bauelementetechnologie

Bottom-Up Roadmap Approach for Power Electronic Systems

- ► How to Identify Future Key Technologies / Required Progress ?
- 1. Clarify State of the Art & Mapping of Component Technologies into System Performance

Demonstrator Systems

- 2. Define Goal as Resulting from *Top-Down Analysis*
- 3. Analyze Sensitivities
- 4. Identify Most Influential Technologies
- 5. Derive Required Progress in Specific Technology Metrics / FOM

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Sensitivities & Technology Vectors

