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SUMMARY

This paper investigates the optimal shape of electromagnetic devices in terms of volume. An entangled pair of a coil and a core is considered. The
dimensionless volume characteristic zVof this transformer design is defined, which is a measure for the volumetric efficiency of electromagnetic
devices. The description of the design is considerably simplified using symmetry arguments. Based on electromagnetic laws, a mapping between
the contours of the core and the coil is found. Consequently, the volume characteristic is expressed in terms of the core contour only. The core
contour is then discretized using Bézier segments and Fourier modes, and the minimization of the volume characteristic is carried out numerically.
While previous engineering efforts brought down zV to approximately 11.6, this paper presents an optimized transformer design characterized by
zV¼ 10.07365� 10�5. To the best of the authors’ knowledge, this is the most efficient shape of a simple coil-core assembly in terms of volume
published up to now. Copyright # 2009 John Wiley & Sons, Ltd.

1. INTRODUCTION

Electromagnetic energy conversion is based on Ampère’s and Faraday’s laws, which are parts of Maxwell’s equations for the

electromagnetic fields [1]. In nearly all practical applications as are transformers, inductors, generators or motors, the electric field is

guided by copper wires and the magnetic field by an iron (ferrite) core. These two geometrically defined channels for the electric

current and the magnetic flux are linked together like two chain links, cf. Figure 1. Both, the current and the flux, are limited by

saturation effects in the iron and the admissible heat production in the core and thewindings. It is the task of the designer to find under

these limitations a good geometry which is an optimum with respect to volume and weight [2], mechanical stresses [3], transmitted

power and losses [4], flux linkage [5], costs [6], or any other cost function of interest. Depending on this choice and the kind of device,

the designs will differ. One of the simplest electromagnetic energy converters is the transformer and its volume is the basic quantity

for many other parameters subject to optimization. For example, if the volumes occupied by the iron core and the windings are

multiplied by the specific weights of the corresponding materials, the optimization procedure will lead to the minimum weight.

In the following, some idealizations and assumptions are introduced to define the task of minimizing the volume for a given

power, which is the problem considered in this paper. A number of physical effects as are radiation, flux leakage, resistance, heat

production, dissipation, structure elasticity, and mechanical stress are neglected since this would impose additional constraints and

introduce new parameters, thus making the optimization more difficult and the result less transparent. Concerning engineering

aspects, simplifying assumptions on the topology of core and windings are introduced, thus allowing to speak about characteristic

areas of cross sections and mean lengths of the corresponding channels. A simplified picture for the magnetic field in the core and the

electric current in the windings is used. No division in primary and secondary circuit is considered in the windings.

It is assumed that the magnetic flux density norm B in the core and the current density norm J in the windings achieve the allowed

maximum everywhere and thus are spatially constant. So, the cross sections A1 of the core and A2 of thewindings must have constant
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Figure 1. Left: high voltage transformer (Fa. Wickeltechnik Langer, Germany). Right: simple representation of a transformer by two enclosing
solid bodies—the roles of the core S1 and the windings S2 can be exchanged.

158 O. PAPES ET AL.
values in order to conserve the total magnetic fluxF ¼ B � A1 and the total current I ¼ J � A2, cf. Figure 1. With the mean lengths l1
for the core and l2 for the windings, the total volume V and transferred power P of the transformer [2] become:

V ¼ l1 � A1 þ l2 � A2 (1)

P ¼ kv J B

2
ffiffiffi
2

p � A1 � A2 (2)

v is the angular frequency and the factor k 2 ½0; 1� is the overall utilization, both are constants with respect to the following

optimization. Thus, an optimum device is obtained, if for a fixed volume V the power P is maximized, or vice versa, if for a fixed

power the volume is minimized.

From the equations above, the law for scaling electromagnetic devices is apparent. The transferred power grows with the fourth

power of the length (without considering thermal limitations) and the volume only with the third power, so in large units the material

is used more economically than in small ones. To get rid of this influence when searching for an optimum design, the volume

characteristic

zV ¼ V

ðA1 � A2Þ3=4
(3)

is defined, which is a dimensionless ratio of volume and power and should be minimized when searching for the optimal geometry.

The number zV is a characteristic figure for geometrically similar designs and it is a simple task to calculate it for a given

construction. A more detailed assessment—not presented here—shows that the minimum value for the volume characteristic must

lie within the limits 4
ffiffiffi
p

p
< zV < 8

ffiffiffi
p

p
, where the upper bound was first addressed in Reference [2]. The task now is to find the

minimum value for zV and the shapes of the core and the windings of a transformer with this characteristic value. The problem is

symmetrical in the following sense: if an optimal pair of shapes for the core and thewindings is found, the roles of core and windings

can be interchanged and a dual solution is obtained.

Mathematically speaking, the search for the minimum zV is a problem best approached within the framework of the calculus of

variations [7]. Many classical problems, for instance to find the sphere as the shape which maximizes volume for a given surface

area, were solved with this approach analytically. But for the transformer problem with its two linked solids no simple solution can

be expected. The dependencies between the areas A1, A2 and the mean lengths l1, l2 in Equation (1) can be quite complicated.

Nevertheless, the optimum shapes and the minimum zV were found recently and are discussed in the following.

Independent from the intellectual challenge, the question may come up, how relevant for the practical engineering and design

work these discussions and results are. The optimum characteristic zV for the volume or zW for the weight are indicators, how far

away a practical design is from the optimum and thus bear a similar meaning as the Carnot-efficiency in thermodynamics. In the

past, as will be shown, the electrical engineers have done their work quite well. In Figure 2, the transformer from a locomotive of the

Rhaethian Railways in Switzerland is shown. This is a narrow-gauge system, designed for operation in the mountains, so very
Copyright # 2009 John Wiley & Sons, Ltd. Euro. Trans. Electr. Power 2010; 20:157–171
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Figure 2. Left: the narrow-gauge locomotive Ge 4/4 II of the Rhaetian Railways RhB, Switzerland (photography by Philipp Glitzner, Austria).
Right: the inbuilt transformer realizes zV� 11.6 (ABB Sécheron SA Genève).
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powerful locomotives are essential; however, the volume is very limited. With this type of construction the volume characteristic

was brought down to zV� 11.6 and this figure is not too far from the absolute minimum derived in the following.

The paper is organized as follows. The optimization problem is defined and solved in Section 2. In Section 2.1, all assumptions

and simplifications are listed and arguments for the postulated topological properties and geometrical symmetries of the considered

designs are given. Based on these assumptions the mathematical definition of the constrained optimization problem is introduced in

Section 2.2. In Section 2.3 an exact mathematical relation between the shapes of core and windings is found and is recast into an

efficient algorithm in Section 2.4. Two different discretizations of the geometry are introduced in Section 2.5. The minimization of

zV is demonstrated in Section 2.6, where four numerical solution strategies are compared and are demonstrated to gain consistent

results that are identical up to the sixth significant digit of zV. The paper closes with concluding remarks in Section 3.

2. MINIMIZATION OF THE VOLUME CHARACTERISTIC

2.1. Simplifications and reduction of dimensionality

A transformer basically consists of two 3D solids, cf. Figure 1: a core made of magnetically conductive material (solid S1, gray) and

the windings made of electrically conductive material (solid S2, red), which enclose each other. Starting with this simple picture of a

prototypic construction, steps toward an optimized design which minimizes the characteristic zV make it necessary to rearrange the

geometry. However, all optimizing processes must be carried out in such a way that the feasibility of the construction is guaranteed:
Co
Ne
Co

W

Sy

Co
� T
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ind

mm

py
he two solids S1 and S2 must not intersect;
� T
hey must allow for the accommodation of physically possible and functionally reasonable current and magnetic fields; and
� T
hese two fields have to be properly entangled in order to ensure the functionality of the transformer.
So the optimization is subject to several interrelated constraints and the problem is fully 3D. As a fully 3D optimization is beyond

the scope of this report, some plausible assumptions are introduced which considerably simplify the problem, all assumptions are

listed in Table I.

In the following, a justification for the symmetry assumptions is given and the 3D optimization problem is demonstrated to reduce

to a 2D formulation. Starting with the situation depicted in Figure 1 but allowing for free cross section shapes and paths, a first way
Table I. List of assumptions used for the setup of the optimization problem.

truction: Ring transformer design, consisting of an entangled pair of core and windings in tight contact
ected: Radiation, flux leakage, resistance, heat production, dissipation, structure elasticity, mechanical stress
: Torus-like with free cross section shape but constant cross section area A1, the magnetic flux density is of constant magnitude

B and orthogonal to cross section
ings: Assembled from infinitesimal tori entangling the core torus, free cross section shape but constant total cross section

area A2, the current density is of constant magnitude J and orthogonal to cross section
etries: Cylindrical and reflection symmetry
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Figure 3. First plausible adjustments reducing the volume characteristic.
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of optimizing zV is to search for designs where the total volume V¼V1þV2 is minimized through various shape variations while

keeping the areas A1 and A2 constant. Further optimization steps involve the identification of possible symmetries and the

optimization of particular cross section shapes of the core.

2.1.1. Ad hoc minimization of the volume. Recalling the necessary constancy of the cross sections A1 and A2 and Equation (1), the

volume becomes minimal if the mean lengths l1 and l2 are minimized. In the considered case, the mean length l2 is minimized by

distributing the solid S2 uniformly along the circumference of S1 and in tight contact with S1, cf. Figure 3 left. Furthermore, l1 is

minimized by radially shrinking the setup until the central opening is completely occupied by solid S2, cf. Figure 3 right. Note that

due to constancy of A2 the shape of this area will differ at different distances from the center.

So far, the transformer design was rearranged such that the areas A1 and A2 were kept constant and the path lengths l1 and l2 were

minimized. However, this does not yet determine the shapes of neither the paths nor the cross-sections, in principle the shapes could

change along the corresponding paths. Nevertheless, intuition suggests that it should be admissible to subject the overall design to

symmetries, i.e., cylindrical and reflection symmetry as anticipated in Figure 3. On the one hand, invoking such geometrical

symmetries substantially simplifies the optimization process since the number and complexity of considered designs are reduced.

On the other hand, assuming the existence of symmetries restricts the set of designs and hence there is a risk of excluding the best

design from the optimization. Thus, it is necessary to justify symmetries, for instance by showing that within a large set of designs

the optimum zV is realized by a symmetric design.

2.1.2. A method for justifying symmetries. The following simple, set theoretical concept is applied to show the plausibility of

symmetries. Imagine a set T of transformer designs. The subset TS � T consists of designs which have a particular symmetry S and

the complementary set TN ¼ T nTS consequently consists of designs which lack this symmetry. Now find a ruleR : TN ! TS which

assigns to each nonsymmetric design DN 2 TN a symmetric design DS ¼ RðDNÞ 2 TS such that the volume characteristic is

retained or becomes better according to zVðDSÞ � zVðDNÞ. If such a ruleR exists, then we know there is no unsymmetric design in

TN which couldn’t be replaced or outperformed by some symmetric design in TS. Thus, we are allowed to search for the optimum

design in TS and can disregard the geometrically more complicated subset TN. Formally this reads as:

8 DN 2 TN 9 DS ¼ RðDNÞ 2 TS j zVðDSÞ � zVðDNÞ
¼¼)min

T
zV ¼ min

TS
zV

(4)

The difficulty is to construct for any investigated symmetry S appropriate pairs of sets T and rulesR. The sets T should be as large

as possible to make the statement most general. However, for too large sets typically no rules R can be found anymore. Thus, the

here presented arguments for the necessity of symmetries are valid under the restriction that concurring geometries stem from

special sets which allow for the construction of a rule.

2.1.3. Cylindrical symmetry. The cylindrical symmetry S is characterized by a z-axis and a cylindrically symmetric design DS is

invariant under rotations by an arbitrary angle around this axis. The set T is constructed such that it consists of designs which result
Copyright # 2009 John Wiley & Sons, Ltd. Euro. Trans. Electr. Power 2010; 20:157–171
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Figure 4. The argument for a cylindrically symmetric transformer design.
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from finite geometrical perturbations of initially cylindrically symmetric constructions, cf. Figure 4. By definition, all nonsymmetric

designs DN 2 TN must have the following properties:
1B
dir

Co
1. E
y go
ecti

pyri
very DN must be decomposable into infinitesimal, sector-like slices and every such slice is suitable as the infinitesimal

generator for a new, cylindrically symmetric DS.
2. T
he shape and size of the slices of DN might vary in the circumferential direction, but all slices must have the same area A1.
3. A
 slice located at angle w contributes to the total area A2 and the total volume V of DN with the differentials A2Fð’Þd’ and

VCð’Þd’, respectively. Fð’Þ and Cð’Þ are two positive and 2p-periodic functions which integrate to 1 over the interval

[0, 2p]. ffiffiffiffiffiffip

4. A
t least one sector at a specific angle ’	 2 ½0; 2p� must exist for which holds 2p4 Cð’	Þ=Fð’	Þ3=4 � 1.

	
A good rule R : TN ! TS is now obtained by assigning to DN the one DS which results from the revolution of the w -sector in the

circumferential direction. According to postulates 2 and 3, the volume characteristic of the parent design zVðDNÞ and an upper

bound1 for the volume characteristic of the derived symmetric design zVðDSÞ are:

zVðDNÞ ¼
V

ðA1 � A2Þ3=4
�

R 2p
0

Cð’Þ d’R 2p
0

Fð’Þ d’
� �3=4 ¼ V

ðA1 � A2Þ3=4

zVðDSÞ �
V

ðA1 � A2Þ3=4
�

R 2p
0

Cð’	Þ d’R 2p
0

Fð’	Þ d’
� �3=4 ¼ zVðDNÞ �

ffiffiffiffiffiffi
2p4

p
Cð’	Þ

Fð’	Þ3=4

(5)

By comparing Equation (5) with postulate 4., we immediately see that the rule R indeed fulfills zVðDSÞ � zVðDNÞ. Invoking the

cylindrical symmetry therefore is an adequate way for minimizing zV in the set T . It remains to be discussed whether the above

constructed set T is not too special. From all four postulates, the most special one is the fourth requiring the existence of a specific

sector. It can be shown that dropping this property generates a comparably small but nevertheless existing set of counterexamples,

for which symmetrization in the sense of R leads to an increase of zV and so destroys the symmetry argument.

The interested reader may countercheck this by considering a design characterized by Fð’Þ ¼ 1
2p
þ " sigðsinð’ÞÞ and

Cð’Þ ¼ 1
2p
þ 3

4
" sigðsinð’ÞÞ, where " 2 0; 1

2p

� �
is a perturbation parameter and sig(.) is the signum function fulfilling sig(x)¼ 1 for

x
 0 and sig(x)¼�1 for x< 0. ATaylor series expansion of the crucial term gives
ffiffiffiffiffiffi
2p4

p
Cð’Þ=Fð’Þ3=4 ¼ 1þ 3p2

8
"2 þ . . . for any

angle w and comparing this outcome with Equation (5), it is clear that symmetrization will increase zV instead of lowering it. Such

counterexamples, although physically admissible, are excluded by postulate 4. From a randomly generated set of nonsymmetric

designsDN with reasonable fluctuations in the functionsFð’Þ andCð’Þ, only a very small fraction is affected by this postulate and

so the argument for cylindrical symmetry presented here is stronger than the definition of T might suggest. On these grounds, the

optimum design is assumed to have the cylindrical symmetry.
ing from DN to DS, additionally the effective cross-section A1 may increase and zV decrease if the magnetic lines are reoriented into the circumferential
on.
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Figure 5. A possible reflection symmetric design with a rectangular core.
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2.1.4. Reflection symmetry. The reflection symmetry S is characterized by a xy-plane being perpendicular to the aforementioned

z-axis and a reflection symmetric design DS is invariant under mirroring along this plane. The set T is constructed such that it

consists of cylindrically symmetric designs in the sense of Section 2.1.3, cf. Figure 5. By definition, all designsDN 2 TN lacking the

reflection symmetry must have the following properties:
Co
1. T
pyri
he xy-plane cuts theDN into two parts, one above and the other below the plane. Upon being reflected, both parts can generate

a new, reflection symmetric DS.
2. B
oth parts have the same area A2 and the same volume V/2, where A2 and Vare the windings cross-section and volume ofDN,

respectively.
3. T
he xy-plane cuts the core cross-section A1 of DN into two not necessarily equal areas A1F above and A1(1�F) below the

plane, F 2 ð0; 1Þ.
The rule R : TN ! TS is constructed such, that the part of DN which maximizes the A1-fraction C ¼ maxfF; 1�Fg 2 1
2
; 1

� �
is

mirrored. The so obtained DS has the volume characteristic:

zVðDSÞ ¼
V

ð2CA1 � A2Þ3=4
¼ zVðDNÞ � ð2CÞ�3=4

(6)

Since (2C)�3/4� 1 holds for C 2 1
2
; 1

� �
, the rule R fulfills zVðDSÞ � zVðDNÞ and the assumption of reflexion symmetry is

admissible. Therefore, if searching for the global minimum of zV, it is sufficient to consider designs which have both, cylindrical and

reflection symmetry. The considered transformer geometry is obtained from the revolution of a single representative slice around the

z-axis and this slice is in addition reflection symmetric. Thus, the dimensionality of the initially complicated 3D problem was

reduced to 2D, cf. Figure 5.

In the following, only the representative slice will be investigated. The slice is characterized by the contour G1 of the core and the

outer contour G2 of the windings in the first quadrant of the rz-plane. Consequently, only nonnegative values of r and z are

considered. The two contours must satisfy certain conditions in order to describe a feasible transformer geometry:
� T
he two curves G1 and G2 lie in the first quadrant of the rz-plane;
� T
hey are continuous and assumed piecewise continuously differentiable;
� T
hey begin and finish on the r-axis, in addition G2 starts on the z-axis, and they do not intersect;
� G
2 lies outside the region enclosed by G1 and the r-axis; and
� T
he ‘‘distance’’ between G1 and G2 is such that a constant cross section A2 is realized.
Based on the above statements, the optimization problem could be reduced to the 2D problem of finding the shapes of the two

contours G1 and G2, which give a minimal overall volume and constant cross sectional areas of the solids S1 and S2.
ght # 2009 John Wiley & Sons, Ltd. Euro. Trans. Electr. Power 2010; 20:157–171
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2.2. Definition of the optimization problem

With the above discussed assumptions of cylindrical symmetry and mirror symmetry, the transformer geometry is fully described by

the core contour G1 separating the core from thewindings, and the contour G2 of the outermost winding being the visible shape of the

transformer. Using these two contours, all quantities entering the volume characteristic (3) can now be formally expressed as

follows:

A1 ¼ 2

Z
G1

z dr ; V ¼ 4p

Z
G2

zr dr ; A2 ¼ p ¼ const: (7)

Note that A2 can be chosen constant since uniform scaling of the geometry does not change zVat all. Furthermore, the choice A2¼p
results in an innermost windings cross section with radius 1. The constancy of A2 along the path l2 introduces a constraint on the

contours: the ‘‘distance’’ between them has to ensure the constant windings cross section A2. As will be shown in the following, this

constraint is so strong that for enough regular core shapes it provides a bijective relation between G1 and G2. This is intuitively clear

if one imagines how the transformer core G1 is gradually wrapped with windings until the final form G2 results. Thus, G1 enters the

calculus as the only independent argument, all other objects, i.e., A1, G2 and V follow from it. This allows us to define the

optimization problem as follows:
Find a contour G1 of the iron core which minimizes zV according to Equations (3) and (7) and under

the constraint A2¼p¼ const.
2.3. The relation between the contours

Intuitively the existence of a relation between the shape of the core G1 and the shape of the outermost winding G2 is apparent: the

final design is obtained by the successive coating of the initially bare core with infinitesimal layers of windings with constant cross-

section, so a constant current density can be realized. In principle, this process can be directly simulated. However, such a numerical

procedure was shown to be time consuming and prone to the accumulation of considerable errors, especially for less regular core

geometries, which tend to appear during the numerical optimization of G1. Thus, it is desirable to have a robust and fast algorithm

that assigns G2 to G1. There is an analytical approach to this problem, and it requires the detailed analysis of the current density in the

windings section S2. The current density is a vector field J : R3 ! R3 with the following properties:
Co
1. D
pyri
ue to cylindrical and reflection symmetry, J only depends on the coordinates r and z and the azimuthal component of J is

assumed to vanish. This reads as J : ðr; zÞ ! ðJr; JzÞ.

2. S
ince the maximum admissible current density should be achieved everywhere, J has a constant norm, i.e., jjJjj ¼ J¼ const.

Thus, Jr¼ J cos(a) and Jz¼ J sin(a) and the remaining unknown is the orientation field a : ðr; zÞ ! a.
3. T
he current is quasi-static, thus J has zero divergence since chargemust not accumulate anywhere [1]. This reads as div(J)¼ 0,

or in cylindrical coordinates 1
r
@
@r
ðrJrÞ þ @

@z
Jz ¼ 0.
By substituting step 2 into step 3 and crossing out the current norm J, a partial differential equation (PDE) for the scalar orientation

field a(r, z) is obtained, which is quasilinear, inhomogeneous and hyperbolic [8]. It can be written in the form of a scalar product:

�sinðaÞ
cosðaÞ

� �
� @a=@r

@a=@z

� �
¼ � 1

r
cosðaÞ (8)

The projection of the gradient of a onto the normal n ¼ ð�sinðaÞ; cosðaÞÞT to the windings equals � 1
r
cosðaÞ, so we know the rate

of change of a along direction n, cf. Figure 6. At the same time a determines n. Thus, it is possible to calculate the field a on a slice in

the rz-plane by integrating da ¼ � 1
r
cosðaÞds along the trajectory W, which arises from the subsequent vectorial addition of line

elements n ds. In terms of techniques applied for the solution of hyperbolic partial differential equations, this is the so-called method

of characteristics [9], and the characteristic here is the trajectory W.
ght # 2009 John Wiley & Sons, Ltd. Euro. Trans. Electr. Power 2010; 20:157–171

DOI: 10.1002/etep



Figure 6. The geometry of the hyperbolic PDE (8). t denotes a winding with orientation a, and W the characteristic crossing t at right angle. Since
the cross-section A2 is everywhere perpendicular to t, dA¼ 2prds holds.

164 O. PAPES ET AL.
The parameter s is the arc length along W and if the dot denotes differentiation with respect to s according to _f ¼ df=ds, the system of

ordinary differential equations (ODE) to be solved is:

# :
_a
_r
_z

0
@

1
A ¼

� 1
r
cosðaÞ

�sinðaÞ
cosðaÞ

0
@

1
A;

að0Þ
rð0Þ
zð0Þ

0
@

1
A ¼

a1

r1
z1

0
@

1
A (9)

The initial conditions at s¼ 0 were chosen such that the characteristic W starts on the contour G1 in the point P¼ (r1, z1) where the

windings orientation is a1. After a solution for W has been obtained, it is simple to determine the point Q¼ (r2, z2) where W crosses

G2. The windings area must integrate to A2 and an increment in cross-section is given by dA¼ 2prds, cf. Figure 6. Thus, the arc

length s2 at which W crosses G2 is implicitly given by solving the following problem for s2:

_A ¼ 2pr ; Að0Þ ¼ 0 ; Aðs2Þ ¼ A2 (10)

If s2 is known, the coordinates r2¼ r(s2) and z2¼ z(s2) become accessible and the point Q is an element of the contour G2. So a

mathematical formulation for the mapping G1 ! G2 was found.
2.4. An efficient algorithm

There is a simpler way to do the assignment ðr1; z1;a1Þ ! ðr2; z2Þ than by solving the four coupled ODEs (9) and (10) for s2. It is

possible to find an analytical expression for the characteristic W in terms of an explicit dependence z ! r. The characteristic in the

representation r(z) fulfills a nonlinear second order differential equation which is equivalent to (9) but omits the use of arc length. By

differentiating the second and third equation of (9) with respect to s, €r ¼ _z2=r and €z ¼ �_r _z=r are obtained. Furthermore, if the prime

denotes differentiation with respect to z according to f 0 ¼ df=dz, the chain rule of differentiation gives _r ¼ r0 _z and €r ¼ r00 _z2 þr0€z.
After eliminating €r, €z, and _r from these four statements, the factor _z2 cancels and the remaining differential equation for r(z)

equipped with the proper initial conditions reads as

# : rr00 ¼ 1þ r02 ; rðz1Þ ¼ r1 ; r0ðz1Þ ¼ �tanða1Þ ¼ v1 (11)

The general solution of this differential equation can be easily guessed. First, it is obvious that the hyperbolic cosine r(z)¼ cosh(z)

fulfills the equation. Second, no characteristic length scale enters the equation. This means an isotropic scaling of the solution must

be again a solution, thus the first of the two expected integration constants should provide this scaling. And third, the equation is

cyclic in z, i.e., z doesn’t appear explicitly. This means a translation of the solution in the z-direction is again a solution, thus the
Copyright # 2009 John Wiley & Sons, Ltd. Euro. Trans. Electr. Power 2010; 20:157–171
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second of the two integration constants should provide this translation. By choosing these two integration constants C1 and C2

properly, the general solution satisfying the initial value problem (11) is given by:

rðzÞ ¼ C1 cosh
z� C2

C1

� �
; C1 ¼

r1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v21

p ; C2 ¼ z1 � r1
asinhðv1Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ v21
p (12)

A reformulation of Equation (10) allows to derive a relation for the location of the point Q. By realizing that A0 ¼ 2pr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

p
,

substituting (12) in A0, integrating from z1 to z2 and setting this result equal to A2, a transcendental equation for z2 is obtained:

A2 ¼ sigðcosða1ÞÞpC2
1 �

1

2
sinh

2ðz2 � C2Þ
C1

� �
� 1

2
sinh

2ðz1 � C2Þ
C1

� �
þ z2 � z1

C1

	 

(13)

Here sig(.) denotes the signum function, which fixes the sign of the integral such that the positivity of area A2 is ensured, no matter in

which direction the integration is performed. The cases a1¼p/2þ np, n 2 Z have to be treated separately due to the appearance of

poles in v1, see (11). In this case the characteristics are z¼ const., and so z2¼ z1 and r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 � sigðsinða1ÞÞA2=p

p
. Now the

algorithm for the calculation of the contour G2 is the following:
Co
1. C
pyri
hoose on G1 enough points Pi ¼ ðri1; zi1Þ, i ¼ 1; . . . ;N, including the local orientation ai
1;
2. F
or all points solve (13) for z2; and
3. D
etermine r2 by using Equation (12).
Thus, to every point Pi on G1 a pointQ
i¼ (ri2, z

i
2) on G2 is assigned such that the contours enclose the area A2. The step 2 involves the

solution of the transcendental Equation (13) for z2. This is best carried out numerically with a Newton–Raphson algorithm. By

vectorizing the algorithm, a very fast and robust assignment G1 ! G2 can be realized.

2.5. Discretized representation of the geometry

Before the optimization of the volume characteristic can be started, a formal definition of the core contour G1 is necessary, which

can be done by an explicit assignment r ! z or a parametrized form s ! ðr; zÞ. Particular choices of such parametrizations of G1

will be presented in the following. However, at this point the qualitative outcome of the optimization must be anticipated in order to

justify the features introduced in the modeling of G1.

Namely, it is observed that the core shape—if subject to the minimization of zV—behaves like a waterdrop lying on a horizontal,

plane and hydrophobic surfacewhich is parallel to the z-axis. Thewaterdrop wants to become as flat as possible in order to minimize

its gravitational potential energy by lowering its center of mass. But at the same time it tries to retain a spherical shape in order to

minimize the surface energy at constant volume. The outcome of these competing tendencies is a compromise: an elliptic-like

shape, which is oblate at the point where the waterdrop is in contact with the surface.

The analogies with the transformer optimization presented here are as follows (refer to Equations (1), (3), and Figure 7). The

region enclosed by G1 is the waterdrop, A1 is its ‘‘volume’’ and the mean length l2 of the windings its ‘‘surface’’. The gravitational

effect is generated by the cylindrical geometry, which favors cores with short mean lengths l1, thus pulls the shape toward the z-axis.

And the effect of the surface energy is represented in the favoring of windings with short lengths l2, thus driving G1 toward a circle.

Indeed, the best optimization results are obtained if G1 is given the shape of a waterdrop ‘‘sitting’’ at distance 1 above the z-axis.

Several techniques realizing a corresponding discretization were tested. Of all these approaches the two associated with the most

accurate results in zV are presented here.

2.5.1. Representation with local Bézier segments. With this method, Nþ 1 points Pi, i ¼ 0; . . . ;N with assigned fixed

orientations ai
1 ¼p(1/2� i/N) are chosen on G1. Two neighboring points Pi and Piþ1 are connected by quadratic Bézier segments

[10] defined by the three control points Pi¼ (ri1, z
i
1), B

i¼ (riB, z
i
B), and P

iþ1¼ (r1
iþ1, z1

iþ1) where Bi is the intersection of the tangents

at Pi and Piþ1, cf. Figure 7 left. If a local parameter t 2 ½0; 1� is introduced, the parametrized representation of one such Bézier

segment is given as:

r1ðtÞ
z1ðtÞ

� �
¼

ri1

zi1

 !
� 2

riB

ziB

 !
þ

riþ1
1

ziþ1
1

 ! !
t2 þ 2

riB

ziB

 !
�

ri1

zi1

 ! !
t þ

ri1

zi1

 !
(14)
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Figure 7. Left: representation of the core contour by Bézier curve segments for N¼ 4. Right: contributions of the ith segment to the core cross-
section A1 and the total volume V.
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The discrete degrees of freedom left free for the optimization are the coordinates (ri1, z
i
1) of every point P

iwith exception of r01 ¼ 1. If

z1 takes positive values at the boundaries, i.e., z
0
1 > 0 and/or zN1 > 0, then vertical line segments are added to the core contour. The

union of Bézier and vertical line segments is a smooth curve representing a valid core contour. The contribution DAi
1 of segment

according to (14) to the area A1 is given as follows, compare with Equation (7):

DAi
1 ¼ 2

Z1
0

zðtÞ_rðtÞ dt ¼
3riþ1

1 � ri1
� �

ziþ1
1 � 3ri1 � riþ1

1

� �
zi1

3
þ

2 riþ1
1 � ri1

� �
ziB � 2riB ziþ1

1 � zi1
� �

3
(15)

The contributionDVi of this segment to the total volume V needs to be computed numerically. For this purpose, more sample points on

the core contour are obtained from Equation (14) and the corresponding points on the windings contour by the numerical procedure

described in Section 2.4. The orientation of the windings contour at these points is calculated with Equation (11) and used for the

construction of cubic Hermite splines connecting two neighboring points. The volume integral contribution is then analytically

evaluated with Hermite interpolation. An advantage of this discretization is its locality. If a discretization point Pi is moved during the

optimization, only the contributions of two neighboring curve segments to the core cross-section A1 and the total volume V need to be

updated, cf. Figure 7 right. This is especially important if the efficient calculation of the Jacobian is required.

2.5.2. Representation by superposed nonlocal functions. In this method, the core contour is realized by the superposition of

several nonlocal basis functions and every basis function is parametrized by the same global parameter t 2 ½0;p�. In order to realize
the waterdrop-like shape, three types of basis functions are superposed: a triangle, an ellipse, and several Fourier modes [11], cf.

Figure 8. The mathematical definition of the so obtained core contour except the vertical line segment is:

r1ðtÞ
z1ðtÞ

� �
¼

1þ að1� cosðtÞÞ
b sinðtÞ þ c

2
ð1þ cosðtÞÞ þ

Pn
k¼1

fk sin
kp
2a
ðr1ðtÞ � 1Þ

� �
0
@

1
A (16)
Figure 8. Representation of the core contour by superposition of global basis functions: triangle, ellipse, and Fourier modes.
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The discrete degrees of freedom are the semi-minor axis a, the semi-major axis b, the vertical line segment c and the n Fourier

coefficients fk, k ¼ 1; . . . ; n. Unlike in the case of Bézier segments, where the orientation a1 was fixed a priori, the representation

(16) determines the orientation according to a1 ¼ argð_r1 þi _z1Þ, where i is the imaginary unit. For the computation of the windings

contour and the integration of A1 and V, dense grids of points P
i on G1 and the assigned points Q

i on G2 are introduced. The integrals

according to Equation (7) are approximated by using linear interpolations of G1 and G2 between adjacent points. The contributions of

one segment to A1 and V are then given by the equations:

DAi
1 ¼ riþ1

1 � ri1
� �

ziþ1
1 þ zi1

� �
(17)

DVi ¼ 2p

3
riþ1
2 � ri2

� �
ri2z

i
2 þ riþ1

2 ziþ1
2 þ ðriþ1

2 þ ri2Þ ziþ1
2 þ zi2

� �� �
(18)

Compared to the previously discussed Bézier method, this discretization lacks locality. All basis functions have global support, thus the

position and orientation of a point Pi is generally a function of all parameters a, b, c and the fk, so all degrees of freedom are coupled. The

advantage of this representation is the existence of the compact Equations (16) that allows the quick construction of G1.
2.6. Numerical optimization

At this stage the initial problem of minimizing the volume characteristic zV is recast into a form suitable for the numerical

optimization. The incorporated simplifications were explained in Section 2.1, the minimization problem was defined in Section 2.2,

the treatment of the constraint A2¼p¼ const. was analytically solved in Section 2.3, and a corresponding algorithm for the

assignment G1 ! G2 was presented in Section 2.4. With the discretization of the core contour G1 according to Section 2.5, the

functional zV now depends on a finite set of discrete degrees of freedom (or parameters) which describe the complete transformer

geometry. An optimization algorithm can search for the parameter set which minimizes zV.

For an efficient numerical optimization it is essential that the number of degrees of freedom can be refined dynamically. Starting

with a coarse discretization, it is refined whenever zV can no more be sufficiently improved. Refining the discretization should add

degrees of freedom while keeping the represented curve initially unchanged. This requirement is met by both methods presented in

Section 2.5. For instance, subdividing a Bézier segment does not change the curve if the new control points are properly defined. For

this purpose all segments were simultaneously subdivided at the points on the curve where a1 is an odd multiple of p
2N
. These points

can be computed analytically. With the nonlocal discretization method, the addition of Fourier modes does not change the former

representation if the new Fourier coefficients are initially set to zero.

By optimizing the 2Nþ 1 coordinates z0; r1; z1; . . . ; rN ; zN or the nþ 3 parameters a, b, c, f1; . . . ; fn, we obtained core contours

minimizing the associated zV. Depending on the type of discretization, different numerical methods were applied, i.e., Conjugate

Gradients, Quasi Newton [12] and Steepest Descent with the Bézier discretization and the Nelder–Mead method [13] with the

nonlocal discretization, respectively. In Table II the minimum value zV is listed against the number of points Pi for the Bézier

discretization and the three different minimization algorithms. All algorithms quickly converge to the same result and so consolidate

the final minimum value zV¼ 10.07364287 in average.
Table II. Convergence of zVagainst the number of points Pi as obtained with the Bézier discretization and with different minimization algorithms.

Discretization points Pi (Nþ 1) Volume characteristic zV

Conjugate Gradients Quasi Newton Steepest Descent
NAG C library NAG C library Cþþ

3 10.0809155 10.0802867 10.0802867
5 10.0737844 10.0737844 10.0737844
9 10.0736544 10.0736544 10.0736544
17 10.0736446 10.0736446 10.0736446
33 10.0736431 10.0736431 10.0736432
65 10.0736428 10.0736428 10.0736432
129 10.0736428 10.0736428 10.0736431
257 10.0736428 10.0736428 10.0736430
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Table III. Convergence of zVagainst the number of integration nodes as obtained with the nonlocal discretization (16 Fourier modes) and with the
Nelder–Mead search algorithm.

Nodes a b c zV

114 0.56544160 0.92664917 0.34566179 10.07351972
229 0.56540864 0.93020924 0.34475896 10.07362431
457 0.56540084 0.93104536 0.34454213 10.07364997
914 0.56539894 0.93124732 0.34448906 10.07365633
1829 0.56539850 0.93129277 0.34447670 10.07365791
3657 0.56539848 0.93129511 0.34447502 10.07365830
7314 0.56539850 0.93129717 0.34447417 10.07365840
14629 0.56539847 0.93129828 0.34447408 10.07365843
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In Table III, the convergence analysis is listed for the nonlocal discretization and the Nelder–Mead minimization. The minimum

value zV together with the corresponding parameters a, b, and c are listed against the number of nodes introduced for the integration.

All runs were realized with n¼ 16 Fourier modes, and increasing this number could not improve zV. The final number

zV¼ 10.07365843 deviates in the fifth position after decimal point from the result obtained with the Bézier discretization, so the two

methods differ by a negligible relative error of 1.5 � 10�6.

Regarding Table III, one should become aware that increasing the number of nodes makes zV become larger, which is due to the

enhanced integration. It was generally observed that shortcomings in the modeling of the windings field and insufficient

discretization tend to spuriously lower the minimum zV, which makes it necessary to interpret minimization results very carefully.
Table IV. The geometrical parameters of the optimum design as obtained with the nonlocal discretization. Use equation (16) to plot the core
contour.

V¼ 36.94848302 A1¼ 1.80051185 A2¼ 3.14159265 zV¼ 10.07365843

a¼ 0.56539847 b¼ 0.93129828 c¼ 0.34447408
f1¼�0.16321756 f2¼�0.01650819 f3¼�0.01360955 f4¼�0.00288422
f5¼�0.00400781 f6¼�0.00077503 f7¼�0.00167010 f8¼�0.00022080
f9¼�0.00080590 f10¼�0.00004639 f11¼�0.00041009 f12¼ 0.00000631
f13¼�0.00020228 f14¼ 0.00001346 f15¼�0.00008063 f16¼ 0.00000129

Figure 9. Left: cross sections of optimum rectangular and circular core shapes. Right: the rendered 3D representation of the optimum transformer
geometry as obtained with the waterdrop-like core shape.
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Finally, the geometric parameters corresponding to the optimum core shape are listed in Table IV. In Figure 9, the corresponding

optimum geometry is visualized in 3D. In the same figure two simpler geometries are reported, i.e., a circular and a rectangular

core shape. These shapes are described by few parameters and can be easily manufactured. The parameters were optimized with the

same methods reported above. However, with these simple contours it is not possible to bring the volume characteristic down to the

value obtained with the waterdrop-like shape.
3. CONCLUSION

3.1. Summary and discussion

With numerical optimization techniques we computed the optimal core contour leading to a transformer geometry with a minimum

volume characteristic zV¼ 10.07365� 10�5. Arguments were given, why the optimum geometry should have the rotational and

reflection symmetry, which considerably reduced the complexity of the task. A constrained minimization problem was defined,

where the constraint emanates from the requirement of a constant cross-sectional area of the transformer windings. The constraint

was resolved using the theoretical framework of hyperbolic partial differential equations, and the method of characteristics was used

for solving the field equation for the windings orientation. An analytical formula could be derived, relating the core and windings

contour. Finally, different discretization and solution procedures were applied in the numerical search of the optimal design and the

results of the various methods were found to be in excellent agreement.

Being the solution of a variational problem, the result is a local but not necessarily a global optimum. Our theoretical and numerical

experiments suggest that this local optimum is unique within a wide parameter range, if not globally. However, we did not give a

mathematically rigorous proof of global optimality, e.g., by proving the convexity of the functional to be optimized. Similarly, we gave

no hard proofs for the assumption that the optimal core has a convex contour and cylindrical and reflection symmetry. Nevertheless, we

believe that even by relaxing these constraints, it is not possible to obtain a design with a better volume characteristic.

3.2. Outlook

The here presented solution of the optimization problem takes advantage of the various simplifications as introduced in Section 2.1.

It would be an interesting task to investigate the topic under more realistic and thus less strict assumptions, which however makes the

problem more difficult to solve and introduces new parameters.

A first worthwhile step toward more realismwould be to allow for an inhomogeneous magnetic flux density norm in the core. This

step requires a physical solution for the magnetic field, a reconsideration of the power formula (2) and the setup of a new objective

function (3). Going further and considering heating-up of the device, it would be necessary to solve a heat conduction problem on

the trial geometry, which would considerably increase the complexity. Such extensions of the optimization problem have no impact

on the assignment between core and windings contours according to Equation (13), thus the here presented strategies may be

directly employed within such extended approaches. An open field, however, is the application and extension of the here presented

ideas to involved geometries in 3D, having probably different topological properties than the here considered toroidal design.

Considering pure theory, two main issues remain. One is the still not satisfyingly answered question whether an optimizing

geometry can be found within the discussed class of toroidal, symmetric designs as proposed and motivated in Section 2.1. A first

improvement would be, if a stronger statement than Section 2.1.3 on the admissibility of cylindrical symmetry could be found. The

second interesting open question is, whether the optimal geometry or the minimum of zV can be expressed analytically. It seems

unlikely that an analytic expression can be derived from our optimization techniques, so we did not explore this track further.

Therefore, our optimal geometry can only be represented in its numerical discretization with either Bézier segments, Fourier series,

or a similar method. It would be a challenging task to investigate the here presented optimization problem under a purely

mathematical viewpoint and answer the question of analytical expressibility of zV.
4. LIST OF SYMBOLS AND ABBREVIATIONS

4.1. Symbols
a, b, c, fi g
Copyright # 20
eometrical parameters specifying the transformer geometry
a w
indings orientation field
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A1, A2, A c
Copyright # 20
ross sections of the core and windings, windings area function
B m
agnetic flux density norm
C1, C2 in
tegration constants
DS; DN p
articular symmetric and nonsymmetric transformer designs
e p
erturbation parameter
F to
tal magnetic flux
G1, G2 c
ontours of the core and windings in the first quadrant of the rz-plane
I to
tal current
J, J, Jr, Jz c
urrent density vector, its norm, r- and z-components
k o
verall utilization factor
l1, l2 m
ean lengths of the core and windings
n n
ormal vector orthogonal to the windings
N, n in
teger numbers referring to the degree of discretization
v a
ngular frequency
P, Pi p
articular point or several points on the core contour
C, F p
artition functions
Q, Qi p
articular point or several points on the windings contour
r, w r
adius and angle of the polar parametrization of the xy-plane
R r
ule assigning symmetric to nonsymmetric designs
R, R3 s
et of real numbers, 3D space of real numbers
s a
rc length along a characteristic
S1, S2 s
olids of magnetically and electrically conductive material
S g
eometrical symmetry
T s
et of transformer designs
TS; TN s
ubsets of symmetric and nonsymmetric transformer designs
t s
ymbol for a winding
# s
ymbol for the characteristic crossing windings at right angle
V1, V2, V v
olumes of the core and windings, total transformer volume
x, y, z a
xes of an orthogonal Cartesian coordinate system
zV, zW v
olume and weight characteristics
Z s
et of integer numbers
4.2. Abbrevations
2D, 3D t
wo-dimensional and three-dimensional
ABB A
sea Brown Boveri
NAG N
umerical Algorithms Group
ODE o
rdinary differential equation
PDE p
artial differential equation
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