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Abstract 

High-speed and high-power-density drives are attracting 
much interest in today’s industry, e.g. for applications with 
mesoscale gas turbine generator systems or turbocompressors 
for fuel cells. In all high-speed machinery the bearing is a key 
component. Therefore, this paper presents the analysis of an 
active magnetic bearing suitable for a permanent magnet 
machine, being part of a high-speed electrical drive system. 
The focus is on the detailed analysis of the magnetic forces, 
the coupling between the different axes and the verification of 
the theoretical considerations by means of 3D-FEM 
simulations. The analysis of the bearing forces is needed to 
implement the position control to the prototype of the bearing 
system, which already has been built. 

1 Introduction 

Over the last few years, industry has had an increasing need 
for high-speed and high-power-density drives, and the trend 
to more compact and higher speed drives continues [1]. For 
instance, in the PCB drilling industry the trend is to produce 
smaller diameter holes and in order to attain the same 
productivity as today the drilling machines have to rotate at 
much higher speeds (more than 300,000 rpm). The trend for 
turbocompressors is towards smaller power ratings and with 
the scaling of turbo machinery, they therefore require higher 
operating speeds [2], [3]. One application is in a fuel cell air 
compressor that requires 120,000 rpm at 12 kW [4] and 
another is in a 70,000 rpm, 131 kW turbo compressor 
connected to a PM machine and inverter [5]. Future 
automotive fuel cells will require low power air compressors, 
which are small and lightweight, and directly driven by high-
speed electrical drives. Ultra-micro gas turbines with power 
outputs up to several hundred watts are being investigated for 
use in portable power applications [6]. 

A key technology for all high-speed rotating machinery is the 
bearing system. Therefore, this paper presents the design and 
analysis of an active magnetic bearing suitable for a 
permanent magnet machine, which is part of a high-speed 
electrical drive system. The machine and the magnetic 
bearings are integrated into one system and the power and 
control electronics for both drive and bearing are optimised 
for high-speed operation and minimal volume. The 

motivation for this work is to achieve a compact design of a 
combined radial-axial magnetic bearing to ensure a compact 
drive system. 

In section 2, the design of the magnetic bearing and 
mechanical construction is presented. The behaviour of the 
bearing forces in the combined radial-axial magnetic bearing 
is further described in section 3. Furthermore the bearing 
behaviour derived from simplified analytical calculations is 
compared with 3D-FEM results. The implications of the 
presented characteristics of the bearing forces on the control 
of the magnetic bearing are presented in section 5. Finally, a 
summary is given and the future work for the combined 
radial-axial magnetic bearing is discussed. 

2 Concept / System 

The active magnetic bearing is constructed together with a 
1 kW, 500’000 rpm permanent-magnet machine developed at 
ETH Zurich [1]. The machine and the magnetic bearings are 
integrated into one system and the power and control 
electronics for both the drive and bearing are optimised for 
high-speed operation and minimal volume. The rotor is driven 
by a 1 kW permanent magnet synchronous machine and a 
bearing unit is placed at each end of the rotor as depicted in 
Fig. 1. The overall size of the system is a maximum diameter 
of 55 mm and a rotor length of 96 mm. 

 
 
Fig. 1. Cut-away view of the electrical drive and the two radial-

axial bearing units mounted on two sides. 
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Most of the active magnetic bearing systems have two 
separate bearings for the axial and the radial direction. This is 
the easiest way to produce a magnetic bearing but it also 
requires more space for the two separate devices. In order to 
reduce the overall size of the bearing and drive system, which 
is an important consideration in ultra-compact high-speed 
machines, the combination of the radial and axial bearing is 
one attractive possibility. The chosen concept, depicted in 
Fig. 2, combines the two bearings by using a radially 
magnetised permanent magnet ring as source of the bias flux 
for both the radial and the axial bearing [7]. The bias flux 
created by the permanent magnet ring alone does not provide 
any force. It has to be superimposed by a control flux for both 
the radial and the axial bearing force. In Fig. 2, both the radial 
and the axial control flux paths are depicted. In one air gap, 
the bias flux and the control flux add together, whereas in the 
opposing air gap they subtract. The resulting difference of 
magnetic flux density in these two air gaps creates the 
carrying force and can be controlled by the sign and 
amplitude of the control current in the control coils. The 
bearing force in one air-gap is deduced from the stored 
magnetic energy in the air-gap. Applying this to the case, 
where there are two opposite forces and the magnetic field is 
created by a bias flux density B0 combined with a control flux 
density Bc results in a total magnetic force acting on the rotor 
according to 
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where Aδ is the active pole shoe area. For small deflections x 
of the shaft position the bearing force Fx in x-direction can be 
linearised for very simple cases as 

 
,x ix x rxF k i k x     (2) 

where kix is the force-current factor and krx the 
force-displacement factor in x-direction. kr is also called 
negative stiffness of the magnetic bearing since without a 

control current the force acts as a negative spring force and 
thus is instable. The idea is to characterise the magnetic 
bearing via these two parameters. For the shown concept it 
will be shown that the relation is not that simple. The force is 
not only linearly dependent on the position and the current. 
Thus the force in the x-direction is better described by 

 
( , ) .x xF f i x  (3) 

The technical challenge of the shown concept consists in the 
fact that during operation the force Fx is not only dependent 
on ix and x but is depending on the actual position of the rotor 
in all directions (x, y, z) as well as on the control currents ix, iy 
and iz in the different coils. This leads then to the following 
characterisation of the bearing force Fx 

 
( , , , , , ).x x y zF f i i i x y z  (4) 

For all three forces F = (Fx, Fy, Fz)
T this relation can be 

rewritten as 

 
( , ) ,fF i r  (5) 

where r = (x, y, z)T is the vector defining the actual position of 
the rotor and i = (ix, iy, iz)

T is the vector containing the values 
of the actual control currents for each direction. 

3 Analysis of the Bearing Forces 

In order to characterise the bearing by the expanded 
equation (5) and to analyze the system stability for different 
points of operation a model of the combined radial-axial 
magnetic bearing has to be built. In a first approach, the 
magnetic bearing is modelled as an equivalent magnetic 
circuit as depicted in Fig. 3. Hereby, the permanent magnet is 
modelled by a magnetic voltage source PM in series with the 
reluctance RPM. The reluctances of the airgaps are dependent 
on the dimensions of the airgap and are defined as 
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Fig. 2. Axial and radial cut view showing the magnetic flux paths. 
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for a homogenous field distribution within the gap. In reality, 
also stray flux effects have to be considered by adjusting the 
effective airgap length and its effective cross section. This can 
be done by comparative 3D-FEM simulations as performed in 
section 4. The currents injected in the control coils are 
modelled as magnetic voltage sources cx+, cx-, cy+, cy- and 
cz-. As the control coils for each radial bearing are connected 
in series, the two corresponding voltage sources are oriented 
such that their magnetic fluxes add together in the main 
magnetic path. In Fig. 3 the main magnetic paths for the three 
bearing directions are illustrated by the bold gray lines. The 
hereby created control flux originates in the negative 
stator-tooth, passes through the rotor and enters the positive 
stator-tooth. Looking at Fig. 2 this can be verified for the 
y-axis. Due to the equal ampere-turns in each axis, the 
condition 

 
andcx cx cx cy cy cy             (7) 

is true. Assuming the rotor in its centre position, the radial 
airgap reluctances Rx+, Rx-, Ry+ and Ry- are equal. Therefore, 
the magnetic flux created by cx+ and cx- will flow entirely in 
the main magnetic path depicted in bold gray on the left side 

of Fig. 3. However, if we assume the rotor to be displaced in 
x-direction, the reluctances Rx+ and Rx- differ and therefore 
not the entire flux will flow in the main path. Part of it will 
flow through the airgaps in the y-axis and the z-axis and 
consequently constitute a coupling flux x-coupling. Thus, if all 
the radial reluctances are equal – the rotor is then in its centre 
position – the y-axis is independent of the control flux created 
by the magnetomotive force cx. On the other hand if the rotor 
is deflected from its centre position the four radial airgap 
reluctances are not equal anymore. Due to such an asymmetry 
the magentomotive force cx can also create a force in the 
y-direction. The same reasoning can be done for the flux 
created by cz. Since the permanent magnet ring has a big 
cross section, its reluctance is of comparable dimension as the 
airgap reluctances and therefore the permanent magnet 
reluctance is not a perfect separation of the axial and the 
radial magnetic flux paths. Therefore, part of the flux created 
by cz will flow as a coupling flux z-coupling though the radial 
airgaps. 

In Fig. 4 the dependency of the radial force Fx on different 
parameters is shown for small airgaps of 250 μm. For 

 
 
Fig. 3. Equivalent magnetic circuit for the magnet fluxes of the combined radial-axial bearing. 
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Fig. 4. Calculation of the radial force-current relation for (a) x = 0 m and (b) x = 150 m for a nominal airgap of  = 250 m. 
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Fig. 4(a) the rotor is assumed to be in its centre position. With 
the magnetomotive force cx varying and cy set to zero 
ampereturns, three curves for the force Fx for three different 
magnetomotive forces cz are depicted. One can see that cz 
from the axial axis has an influence on the radial force but 
still the relation between the current ix and the force Fx is 
linear for all cases. The influence of cz gets obvious as we 
look at the coupling flux z-coupling. This flux increases the 
main flux created by cx in the negative airgap x-, but 
decreases the main flux in the positive airgap x+. So the 
force-current relation in the x-axis is weakened for positive 
z-currents as shown in Fig. 4(a). The situation changes when 
an additional radial displacement x = 150 μm occurs. The 
relation between the force Fx and the magnetomotive force cx 
becomes highly non-linear. Such a non-linear characteristic 
and the coupling to the other axes’ parameters can pose 
severe problems for the control of the rotor position as will be 
shown in the next section. 

We can now compare these results with a bearing with 
increased airgaps of  = 500 m. This will result in lower 
bearing forces for the same amount of magnetomotive force 
but can improve the non-linear relation of the control current 
and the created force. In Fig. 5(a) it can be seen that the force 
Fx is substantially lower than it is in the bearing system with 
tight airgaps. On the other hand, when the rotor is deflected in 
x-direction, the nonlinearity is much less pronounced in 
Fig. 5(b) than it is in Fig. 4(b) for the small airgaps. In fact, 
the nonlinear behaviour gets more dominant the smaller the 
margin between rotor and stator is. Therefore, for rotor 
movements of ±150 m it may be better to choose an airgap 
that is at least 500 m. 

The two charts show that in all situations there is an 
ampere-turns value cx, for which the rotor can be pulled to 
and held in the centre position. In such a stationary analysis 
the rotor can be stabilised by a correct choice of the control 
current. However, it is important to keep in mind that with a 
too narrow airgap the stabilisation can be much more difficult 
to achieve since the controller has to guarantee a stable 
operation even under non-linear conditions. This is not trivial 
since a magnetic bearing on its own is already challenging in 

terms of stable control due to the inherent unstable 
characteristics of the control path. A proper selection of the 
PID controller gains is a basic requirement for a stable 
operation. If the control path changes such strongly as 
described in Fig. 4 and Fig. 5 due to different operating points 
of the bearing, it will be a big challenge for a stable control 
within the whole range of operation. 

4 Verification with 3D-FEM 

As the nonlinear relations between the magnetic forces and 
the operating point parameters are used in the control for the 
bearing, the validity of the simplified analytical model has to 
be verified. This has been done by modelling the magnetic 
bearing in a 3D-FEM simulation software [8]. In all the 
simulations both the radial and the axial airgaps are set to 
500 m. The results of the simulations showed that the 
magnetic flux is not entirely confined in the airgap area but 
also takes some stray paths. This fact has to be considered in 
the analytical model of the equivalent magnetic circuit. This 
was done by adjusting the airgap reluctances for the increased 
airgap area as mentioned before. 

For the comparison in Fig. 6 the relation of the axial force and 
the axial control flux was studied. In the simulation the stator 
material is defined as a real magnetic iron. Therefore, 

 
 (a) (b) 
 

Fig. 5. Calculation of the radial force-current relation for (a) x = 0 m and (b) x = 150 m for a nominal airgap of  = 500 m. 
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Fig. 6. Comparison of the axial force-current relation derived by 

calculation and by a 3D-FEM simulation. 
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saturation effects occur for high magnitudes of current 
injection into the control coils. The outermost dots on each 
side in Fig. 6 were ignored for the fitted curve of the 
simulation results because saturation effects in the range of 
high control fluxes are not considered in the analytical model. 
As can be seen in the chart, the force calculated with the 
equivalent magnetic circuit coincides well with the results 
from the 3D-FEM simulation, which confirms the proposed 
model. 

In Fig. 7 the effect of a deflected rotor on the radial force is 
depicted. In one case the rotor is in its centre position and no 
other current than ix is present. The second pair of curves 
shows the situation when the rotor is deflected in the positive 
x-direction by 200 m. Again, an acceptable match of the 
simulation and calculation results can be observed. This 
proves the presented anaytical model which therefore can be 
used for the controller design. 

5 Effects on the Control 

The main challenge in a magnetic bearing is always a stable 
and robust levitation of the rotor either in its centre position 
or in another predefined position. The control of the rotor 
position will be implemented as cascaded position controller. 
To study the effects of the non-linear relations in the magnetic 
bearing system the cascaded controller was implemented as a 
Matlab/Simulink model. The performance of the controller 
can be compared for different definitions of the forces. A first 
approach is to define the force according the well-known 
relation (2) where ki and kr are taken from the simplest 
operating point where the rotor is in its centre position and no 
control currents are injected into the coils. In this first 
simulation of the cascaded position controller the 
force-current and the force-displacement factors were defined 
as follows: 

Thus, the force in each direction is assumed to be linearly 
dependent only on the control current in the corresponding 
coil and on the deflection of the rotor in that axis. The bearing 
parameters ki and kr are assumed to remain constant for any 
position the rotor can reach and for any current injected in the 
coils. For such a model it is possible to find a PID parameter 
set which stabilises the rotor or to let it follow a certain 
setpoint function. 

It should now be investigated if the aforementioned 
non-linear characteristics of the bearing forces pose a problem 
for such a controller. To simplify the problem only the 
definition of the force for the x-axis is made variable. All the 
other bearing parameters are left unchanged. As it can be 
observed in Fig. 8 the force Fx no longer depends linearly on 
the control magnetomotive force cx if the rotor is deflected in 
x-direction. Knowing that the magnetomotive force cx is 

directly related to the control current ix via the number of 
turns, the relation of the force Fx and the control current can 
now described by a function according the following 
polynomial equation: 

 
2( ) ( ) ( ) ,x x xF a x i b x i c x      (8) 

where the polynomial coefficients are dependent on the rotor 
displacement in the x-direction. The coefficients for the 
curves depicted in Fig. 8  are listed in Table 2. These 
coefficients were then integrated in the simulation model of 
the controller. In reality however, the polynomial coefficients 
are also dependent on the rotor deflection in the other 
directions and also depend on the control currents in the other 
coils. This fact has been omitted in order to simplify the 
problem. 

In Fig. 9 the rotor position should follow a sinusoidal setpoint 
function. If we implement the constant bearing parameters 

 
Fig. 7. Comparison of the radial force-current relation for two 

different radial positions derived by calculation and by a 
3D-FEM simulation. 
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 Radial bearing Axial bearing 
Force-current factor - ki 2.8 [N/A] 6.1 [N/A] 

Force-displacement factor - kr 64 [N/mm] 172 [N/mm] 

 
Table 1. Bearing parameters describing the carrying force for a 

linearised model. 

 
Fig. 8. Nonlinear dependency of Fx on displacement x. 
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displacement x a b c 
centre position 0 2.7872 0 

± 200 m ± 0.0934 3.8110 ± 13.077 

± 400 m ± 0.4308 11.2304 ± 60.302 

 
Table 2. Bearing parameters describing the carrying force.



listed in Table 1 there can be found a PID parameter set 
(KP, TI, TD) which makes the rotor follow the setpoint 
function. Now it should be checked if the controller works as 
well if the force Fx is dependent on the rotor position as 
described in equation (8) with the parameters of Table 2. As 
can be seen in Fig. 9 this is not the case for the same set of 
PID parameters. The x-position of the rotor cannot follow the 
sinusoidal setpoint function and the rotor can’t be pulled to 
the centre anymore with this set of PID parameters. A similar 
behaviour can be observed if we force the rotor to follow a 
stepfunction as depicted in Fig. 10. 

Thus, it is essential to implement the correct definitions for 
the different forces with their dependencies on the current 
operating point of the magnetic bearing in order to optimise 
the position controller. It may be necessary to implement a 
non-linear controller or a decoupling network to linearise the 
control path. Or it may be even possible that the bearing 
parameters have to be adapted during operation according the 
actual working point. 

6 Summary 

For high-speed machines the use of conventional ball 
bearings brings some drawbacks as high losses and limited 
lifetime. An active magnetic bearing is an alternative bearing 
topology, which is suitable for high-speed operation. Due to 
the compact size of the electrical machine at these 
high-speeds, it is important to minimise the volume of the 
magnetic bearing as well. In this paper, an active magnetic 
bearing that has the radial and axial forces combined into a 
single bearing unit was presented. 

One of the critical and challenging research topics for active 
magnetic bearings is the analysis of the magnetic forces, their 
dependencies and their couplings. For this purpose, a simple 
analytical model of the bearing was described. With this 
model the bearing forces were discussed and some important 
dependencies and couplings were pointed out. To validate the 
analytical model it has been compared to the results of 
3D-FEM simulations of the chosen bearing system. The 
simulation results showed a good accordance with the 
analytical results, which confirms the proposed model. Both 
approaches clearly showed the nonlinear characterisation of 
the bearing forces depending on the bearing’s current 

operating point. Furthermore, the effects of this non-idealities 
on the position controller of the bearing were studied. It can 
be concluded that the correct description of the bearing forces 
is crucial in order to find the appropriate PID controller gains. 
It may be even necessary to adapt the controller gains during 
operation according the current operating point. Further 
research in that field will be focused on the analysis of 
small-signal and large-signal stability of the control for such a 
coupled system under consideration of decoupling networks. 
Furthermore, the cross-coupling between the bearing axes 
shall be minimised and geometrical parameters will be 
studied in order to achieve stable control behaviour. 
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Fig. 10. Controlled x-position following a stepfunction as 

set-point. 
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Fig. 9. Controlled x-position following a sinusoidal set-point. 
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