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Abstract 

Bearingless motors offer various advantages compared to classical motors with mechanical 

bearings. However, they make great demands on the control algorithms. Due to the 

availability of very fast low-cost DSP, a lot of new control strategies can be implemented, 

which offer a lot of different benefits. In this paper, various control algorithms are compared 

regarding adequate criteria. 

Introduction  

In recent years many different bearingless motor concepts (cf. [1] and [2]) have been 

presented, where the radial position of the rotor can be regulated with active magnetic forces 

during standstill and rotation. They have gained a lot of attractiveness for various 

applications due to their many advantages such as no friction losses, ultra-high cleanness and 

compact dimensions. On the other hand, the price of these benefits is an increased effort in 

the power and control electronics, which are needed for the precise and fast regulation of the 

rotor position. Typically, the control electronics contain a digital signal processor unit (DSP) 

which processes the sensor signals, determines the motor state and calculates an optimal 

output of the bearing power electronics. While in the past the possibilities of low-cost DSPs 

have been relatively poor, nowadays DSPs with great possibilities including a very high 

clock-frequency, several integrated analog-to-digital-converters, integrated pulse-width 

modulation (PWM) generation, preassigned trigonometric functions and a large available 

internal memory are provided from various companies. These high-end DSPs allow 

exploring more advanced control algorithms, which have not been possible to implement so 

far. 

In this paper various advanced linear and non-linear control concepts are investigated and 

compared to a state-of-the-art proportional-integral-differential (PID) controller regarding 

the disturbance rejection behavior, position control accuracy, position control response time, 

and the needed processor calculation time. Namely linear PID control, non-linear bang-bang 

and state-space H∞ control are compared regarding adequate criteria. These control concepts 

are compared by an appropriate mathematical simulation and the most promising ones 

fulfilling the criteria are implemented and tested on a modern bearingless brushless 

permanent magnet slice motor as introduced in [3]. 



Control topology 

In this paper a magnetic bearing for two degrees of freedom is considered, while the other 

degrees of freedom are assumed to be stable. This can be achieved by combining two 

bearingless motor units and an additional thrust bearing as proposed in [4] or alternatively by 

using an auxiliary passive bearing such as introduced in [5]. The latter concept is called 

bearingless slice motor and is used for the prototype to verify the calculations in this paper.  

The control scheme of the magnetic bearing for the two radial axes x and y is depicted in 

Fig. 1. The whole system can be divided in three parts: the digital control, implemented on a 

DSP, the electrical system which contains the electrical plant with the ohmic-inductive 

bearing coils used as electro magnets, and the mechanical system, i.e. the rotor with its 

inertia force, where the mechanical system can be described by the following equation 
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where m is the rotor mass, kI the current-force-constant and kR the radial stiffness. The 

interface between the three mentioned system parts is provided by current sensors, position 

sensors, hall sensors, analog-to-digital-converters (ADC), and a pulse-width modulation 

element (PWM) to control the bearing currents. The proposed control concept consists of an 

outer position control loop and an inner current control loop. The rotating transformations 

T(α0 + p·ωt) and T
-1

(α0 + p·ωt) are needed for multipolar bearings, where the bearing currents 

rotate with a frequency ωelectrical = p· ωmech and have to be in phase with the air gap flux 

density distribution. The main control algorithm for the radial position axes x and y is in the 

outer loop and has for all the investigated control algorithms one input and one output per 

axis (cf. Fig 1, position controller). The input ex,y is equal to the difference between the 

reference position xref (or yref) and the actual position x (or y). The reference positions xref and 

yref are typically set to zero (xref = yref = 0) to keep the rotor in a center position. The output 
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Fig. 1.  Radial position control scheme of a multipolar bearingless motor with an inner current control loop and 

an outer position control loop.  



of the position controller is the reference bearing current Iref,x (and Iref,y , respectively) for the 

inner (current regulating) control loop. 

Mathematical Model 

A mathematical model of the system including the plant, the power electronics, the digital 

signal processor (DSP) software and including various noise sources that simulate sensor 

noise and a disturbance force acting on the rotor has been developed and implemented with 

the Matlab-Simulink software. Fig. 2 shows a simplified scheme with the three noise sources 

N1, N2 and N3. N1 and N2 simulate sensor noise on the current sensors and position sensors 

and are modeled as band limited white Gaussian noise, while N3 simulates a disturbance 

force acting on the levitated rotor, which is used to model the disturbance rejection behavior 

of the controller. With the simulation model, the proposed control algorithms can be tested 

and compared to each other and optimal parameters can be found for each of them without 

the risk of damaging the hardware prototype. For a fair comparison of the different control 

algorithms, the optimal parameter set of each of them has to be found by a mathematical 

derivation. The calculated parameter-sets have been verified by simulation to ensure that 

there exists no better parameter set for any of the investigated control algorithms. 

For the state-space regulators (i.e. H∞ and LQR/LTR), two state variables per axe have been 

defined, namely the x and y position of the magnetically levitated rotor in x and y direction 

and the velocities vx and vy. With these four variables it is possible to define the actual 

system state for every moment t.  

Control Concepts 

Due to the non-linear correlation of the force, bearing current and radial position of the 

magnetic bearing as well as the limitations of the electrical plant, complex and even non-

linear control algorithms can be considered for a stable regulation of the rotor position. 

There exist a lot of possible control algorithms that can be used to control the rotor position. 

Each of them features its specific advantages and disadvantages. In this paper, some 

exemplary control algorithms are chosen and compared to each other. Fig. 3 shows the 
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Fig. 2.  Abstract mathematical model with the three noise sources N1, N2 and N3. 



classification of some exemplary control algorithms, which are considered to be 

implemented and tested on the prototype. In the subsequent section these control concepts 

will be shortly explained.  

PID controller and variations. Today, many applications of bearingless motors use a state-

of-the art PID linear controller [6] with the three control parameters kP, kI and kD which 

regulate the controller output proportional to the position error e(t). This leads to the 

following equation: 
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which can be rewritten with the Laplace operator as the transfer function  
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Standard PID are quite fast and easy to implement and achieve good performance results, but 

they might not be very robust against system nonlinearities as the controller parameters kP, kI 

and kD depend strongly on the motor and bearing plant and are typically selected for a 

specific operating point. In this paper, also variations of the PID controller and combinations 

with other control algorithms are investigated.  

H∞ control. A H∞ controller has been presented in [9], [10] and [11], where also a detailed 

derivation can be found. Therefore, in this paper only a short description is given. The 

control plant is extended with a virtual input vector w, which contains the reference position 

xref and with a virtual output vector z, which contains the output signal Ix,ref. The choice of 

weighting vectors ze, zu and zy is the most important task for the design of a stable H∞ 
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Fig. 4.  Expanded control loop for the H∞ controller. 
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Fig. 3.  Classification of the control algorithms, which are investigated in this paper.  



controller. The extended plant is depicted in Fig. 4 and the resulting equations are then: 
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The control error e(s) should be minimized and the output signal y should be equal to the 

reference position r. The corresponding H∞ problem to solve can be formulated as 
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where ||Tzw(s)|| corresponds to the H∞ norm of the transfer function Tzw of the expanded 

system. The H∞ norm is defined as the maximum singular value of the function Tzw(s): 

  max

H

zw zwT T   . (6) 

More information about H∞ control can be found in [9], [10] and [11]. Also a linear quadratic 

Gaussian controller with loop transfer recovery (LQR/LTR,) (cf. [12]) has been considered 

and some simulations have been done. The advantage of LQR/LTR control is that sensor 

noise can be integrated in the mathematical model. The expected results do not differ much 

from those of the H∞ control. Therefore only the H∞ control has been considered as a state-

space controller to implement on the prototype.  

Bang-bang controller. A controller with exactly two possible output states is called bang-

bang controller. This is the simplest possible non-linear controller. As shown in Fig. 5 (a) a 

simple relay switches between the two output states +Imax and -Imax, depending on the sign of 

the position error e: 

 
max ,

max ,

 if

 if

0

0

x out x y

y out x y

I I e

I eI

   
  

   

. (7) 

A pure bang-bang cannot stabilize the position of the magnetic bearing plant. Fig. 6 (a) 

shows the unstable behaviour of one radial position axis of the magnetic bearing without a 

controller by state diagram analysis, whereby the system state variable position change 

velocity vx = dx/dt (and vy = dy/dt, respectively) is plotted against the position x (and y, 

respectively). Adding a bang-bang controller results in the trajectories depicted in Fig. 6 (b). 
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Fig. 5.  Simplified control loop of the pure bang-bang controller (a) and the bang-bang controller with an 

additional damping element in the feedback-loop. 



As one can see, the plant is still unstable for all trajectories, because the switching line 

x,y = 0 gets slightly tilted due to the delay caused by the parasitic lowpass filter of the sensor 

and, therefore, the system gets destabilized. But the system can be stabilized by adding an 

additional derivative part to the feedback path of the measured positions x and y: 
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The bang-bang controller expanded in this manner is depicted in Fig. 5 (b). Equation (8) 

together with the differential equation of the mechanical system (1) gives the following 

solution of the differential equation in x-direction: 
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This results in a stable system, as shown in Fig. 6 (c) due to the negative slope of the 

switching line which is rotated in counter-clockwise direction due to the derivative part kD in 

the feedback path.  

Results and experimental verification 

Based on the introduced model (cf. Fig. 2) the different control algorithms have been 
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Fig. 6.  State diagram of the unstable system without controller (a), unstable system with a pure bang-bang 

controller and the stabilized system with a bang-bang controller with an additional damping element 
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Fig. 7.  Simulated disturbance response of the PID controller (a), the bang-bang controller with an additional 

damping element (b), and the H∞ controller (c) and a disturbance force Fx = 50 N during 1.1 ms. 

 



simulated and analyzed regarding the aforementioned criteria to choose the most optimal 

algorithm. Fig. 7 shows exemplarily the simulated response to an axial disturbance force Fz 

applied for a defined period of time td for three different controller types, namely the PID 

controller, a bang-bang controller with an additional damping element and a H∞ controller. 

Interestingly, the three control methods exhibit similar dynamic performance, whereby the 

H∞ controller shows the fastest reaction and smallest error integral. 

To verify the simulation results the control algorithms have been implemented on a 
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Fig. 8.  Photo of the bearingless fractional slot motor (cf. [5]) prototype which was used to compare the 

different control algorithms 
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Fig. 9.  Position orbit x,y(t) of the magnetically levitated rotor during rotation at nmax = 1500 r/min (a), rotation 

at the critical mechanical resonance speed nresonance = 72 r/min (b) and rotation at n = 500 r/min with a strong 

mass-unbalance. 

 



bearingless fractional slot motor which was introduced in [5] (cf. Fig. 8) and compared 

according to the aforementioned criteria. In particular, the two most promising control 

algorithms due to the simulation results, namely the PID controller and H∞ controller have 

been compared under different conditions. Fig. 9 shows exemplarily the position orbit of the 

levitated rotor at a rotational speed of n = 1500 r/min in (cf. Fig. 9 (a)), at the critical 

mechanical resonance speed nres = 72 r/min (cf. Fig. 9 (b) and at a speed of n = 500 r/min 

with a strong mass unbalance fixed on the rotor (cf. Fig. 9 (c)). As one can see the robust H∞ 

controller copes much better with the extreme conditions mass-unbalance and mechanical 

resonance speed.  

Experimental comparison of the control algorithms 

In Table 1 the different control algorithms are compared regarding different criteria. One can 

see that no control method is superior in all aspects. The H∞ controller for example is very 

robust against external disturbances but needs a considerable implementation effort. The 

very simple bang-bang controller on the other hand cannot stabilize the system without 

additional measures. The conventional PID control might be a good compromise between 

control performance and implementation effort in many cases. In any case, for each 

particular application the control algorithm has to be chosen carefully in dependency on the 

specific demands. The investigations of this paper might help to select the appropriate 

controller, if the desired control conditions and requirements are known. 

Summary 

In this paper, a simulation model of a magnetically levitated motor system and 

corresponding power electronics has been developed and several different control algorithms 

have been tested. The most promising ones based on the simulation results have been 

Table 1 

Qualitative comparison of the different control algorithms, where (+) is an especially good performance,() is 

an average performance and (-) is a rather weak performance in the respective category. 
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implemented on a DSP, namely a PID controller and a H∞ controller. Especially under 

extreme conditions like rotating with a mass-unbalance or rotating at the critical mechanical 

resonance speed the H∞ controller behaves significantly better, but is characterized by a large 

implementation effort.    
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