

IEEE Intermag 2009, Sacramento, CA May 8, 2009, GG-02

Novel bearingless motor concept with 26 poles and 24 slots

F. Zürcher, T. Nussbaumer*, W. Gruber**, and J. W. Kolar

Power Electronic Systems Laboratory ETH Zurich Zurich, Switzerland

*Levitronix GmbH Technoparkstrasse 1 Zurich, Switzerland **ACCM GmbH Johannes Kepler University Linz Linz, Austria

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Power Electronic Systems Laboratory

Motivation Basic principle: passive bearing Basic principle: active bearing and

Motivation and applications of bearingless slice motors

Properties of bearingless slice motors

- Ultra compact setup
- Passive axial and tilting bearing
- Active radial bearing and PMSM
- Large air-gap possible
- High torque

Application

50

- Hermetically encapsulated rotor in process chamber
- For biotechnology, pharma and semiconductor industry

Laboratory

Power Electronic Systems

Motivation Basic principle: passive bearing Basic principle: active bearing and drive

Basic principle: passive axial and tilting PM bearing

Motivation Basic principle: passive bearing Basic principle: active bearing and drive

Basic principle: passive axial and tilting PM bearing

Motivation Basic principle: passive bearing Basic principle: active bearing and drive

Basic principle: passive axial and tilting PM bearing

Motivation Basic principle: passive bearing Basic principle: active bearing and drive

Basic principle: passive axial and tilting PM bearing

ETH

Power Electronic Systems Laboratory

Motivation Basic principle: passive bearing Basic principle: active bearing and drive

Power Electronic Systems

Laboratory

Basic principle: passive axial and tilting PM bearing

Motivation Basic principle: passive bearing Basic principle: active bearing and drive

Basic principle: passive axial and tilting PM bearing

Motivation Basic principle: passive bearing Basic principle: active bearing and drive

Power Electronic Systems

Laboratory

Basic principle: passive axial and tilting PM bearing

Motivation Basic principle: passive bearing Basic principle: active bearing and drive

Power Electronic Systems

Laboratory

Basic principle: passive axial and tilting PM bearing

Motivation Basic principle: passive bearing Basic principle: active bearing and drive

Basic principle: passive axial and tilting PM bearing

Motivation Basic principle: passive bearing Basic principle: active bearing and drive

Basic principle: active radial bearing and motor drive

Principle

57

- Active radial magnetic bearing for Δx and Δy
- Permanent magnet synchronous motor (PMSM)
- Stator with bearing and drive windings...
- ...and position and angular sensors
- Rotor with permanent magnets and back iron

Laboratory

Power Electronic Systems

Motivation Basic principle: passive bearing Basic principle: active bearing and drive

Basic principle: active radial bearing and motor drive

Key parameter

- Number of stator teeth: N = 24 $\Rightarrow 12$ motor teeth
 - \Rightarrow 12 bearing teeth
- Number of rotor pole-pairs: p = 13

Principle

31

- Active radial magnetic bearing for Δx and Δy
- Permanent magnet synchronous motor (PMSM)
- Stator with bearing and drive windings...
- ...and position and angular sensors
- Rotor with permanent magnets and back iron

Laboratory

Power Electronic Systems

Motivation Basic principle: passive bearing Basic principle: active bearing and drive

Power Electronic Systems

Laboratory

Basic principle: active radial bearing and motor drive

Motivation Basic principle: passive bearing Basic principle: active bearing and drive

Power Electronic Systems

Laboratory

Basic principle: active radial bearing and motor drive

Motivation Basic principle: passive bearing Basic principle: active bearing and drive

Power Electronic Systems

Laboratory

Basic principle: active radial bearing and motor drive

Motivation Basic principle: passive bearing Basic principle: active bearing and drive

Basic principle: active radial bearing and motor drive

31

Power Electronic Systems

Motivation Basic principle: passive bearing Basic principle: active bearing and drive

Power Electronic Systems

Laboratory

Basic principle: active radial bearing and motor drive

31

Permanent magnet synchronous drive Active radial magentic bearing

Permanent magnet synchronous drive

ETH

Power Electronic Systems

Laboratory

Permanent magnet synchronous drive Active radial magentic bearing

Permanent magnet synchronous drive

ETH

Power Electronic Systems

Laboratory

Permanent magnet synchronous drive Active radial magentic bearing

Permanent magnet synchronous drive

6 GG-02 Novel bearingless motor with 26 poles and 24 slots

Permanent magnet synchronous drive Active radial magentic bearing

Active radial magnetic bearing

ETH

Power Electronic Systems

Laboratory

Permanent magnet synchronous drive Active radial magentic bearing

Active radial magnetic bearing

ETH

Power Electronic Systems

Laboratory

Permanent magnet synchronous drive Active radial magentic bearing

Active radial magnetic bearing

7 GG-02 Novel bearingless motor with 26 poles and 24 slots

Power Electronic Systems Laboratory

Bearing force optimization Motor torque optimization

Parameter Optimization

Parameter to be optimized

- Rotor and stator length I
- Magnet thickness δ_{magnet}
- Magnet shape
- Tooth width w_{tooth}
- Number of windings

Criteria

- Maximum motor torque T_M
- Minimum cogging torque *T_{cogging}*
- Maximum levitation F_x
- Maximum axial stiffness k_z
- Minimum radial stiffness k_r

Power Electronic Systems

Laboratory

\Rightarrow Optimization using 3D-FEM simulation

50

Bearing force optimization Motor torque optimization

Power Electronic Systems

Laboratory

Motor torque optimization (example)

ETH

9 GG-02 Novel bearingless motor with 26 poles and 24 slots

Bearing force optimization Motor torque optimization

Power Electronic Systems

Laboratory

Bearing force optimization (example)

Prototype Experimental performance

Power Electronic Systems

Laboratory

Laboratory Prototype

Experimental performance

Performance Results

Prototype properties

- Outer diameter: D = 500 mm
- Rotor weight: m = 3.1 kg
- Air-gap: $\delta = 7 \text{ mm}$

Bearing performance

- Max. bearing force: $F_x = 155$ N
- Max. displacment during acceleration: $\Delta x = 69 \ \mu m$
- Radial stiffness: $k_r = -70.0 \text{ N/mm}$
- Axial stiffness: $k_7 = 20.1$ N/mm

Motor performance

313

- Max. speed: $n_{max} = 1800$ rpm
- Acceleration time: $t_{0-1500} = 1.5 \text{ s}$
- ۰ Rated torque: T = 13.1 Nm

Laboratory

Power Electronic Systems

Prototype Experimental performance

E ALL

Thank you for your attention! Please feel free to ask questions. zurcher@ieee.org

31

Power Electronic Systems Laboratory

Prototype Experimental performance

Laboratory

Motor Performance

14 GG-02 Novel bearingless motor with 26 poles and 24 slots

Prototype Experimental performance

Laboratory

Bearing Performance

15 GG-02 Novel bearingless motor with 26 poles and 24 slots