ETH zürich

Google/ IEEE Little-Box Challenge

Johann W. Kolar et al.

ETH Zurich, Switzerland Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Google/ IEEE Little-Box Challenge

All Team Members of ETH Zurich/FH-IZM/Fraza

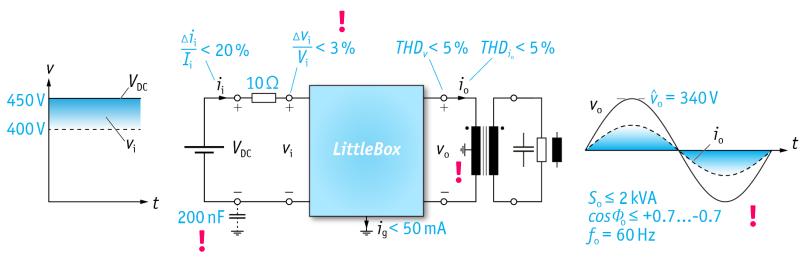
ETH Zurich, Switzerland Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Outline

- The Google Little Box Challenge
 ETH / FH-IZM / Fraza Team
- **Converter Topology / Control**
- New Component Technologies
- Construction
- **Experimental Results**
- Evaluation / Optimization
- Concepts of Other Finalists
- Conclusions

The Google Little Box Challenge

Requirements Grand Prize Team



Google | IEEE

· LITTLE BOX CHALLENGE

- Design / Build the 2kW 1-OSolar Inverter with the Highest Power Density in the World
- Power Density > 3kW/dm³ (50W/in³)
- Efficiency > 95%
- Case Temp. < 60°C
- EMI FCC Part 15 B

Push the Forefront of New Technologies in R&D of High Power Density Inverters

Google | �IEEE

- Design / Build the 2kW 1-OSolar Inverter with the Highest Power Density in the World
- Power Density > 3kW/dm³ (50W/in³)
- Efficiency > 95%
- Case Temp. < 60°C
 EMI FCC Part 15 B

Push the Forefront of New Technologies in R&D of High Power Density Inverters

- Highest Power Density (> 50W/in³)
 Highest Level of Innovation

- Timeline
- Challenge Announced in Summer 2014
 2000+ Teams Registered Worldwide
 100+ Teams Submitted a Technical Description until July 22, 2015
 - 18 Finalists (3 No-Shows)

- Highest Power Density (> 50W/in³)
- Highest Level of Innovation

* Technology Packages Available incl. Patent Licenses

■ Timeline –

- Challenge Announced in Summer 2014
 2000+ Teams Registered Worldwide
- 100+ Teams Submitted a Technical Description until July 22, 2015
- 18 Finalists (3 No-Shows)

18 Finalists Invited to NREL / USA
Presentations on Oct. 21, 2015

6/48

VDE

- Winner \rightarrow Feb. 29, 2016

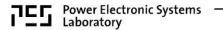
Multi-National Team

- Germany
- Switzerland
- Slovenia

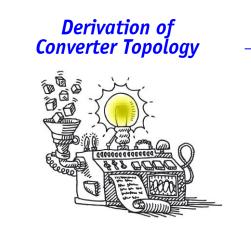
IZM

- **Fraunhofer** ... Packaging, Embedding, EMI, etc.
 - ... Topologies, Circuits, Control, Software, System Testing, etc.

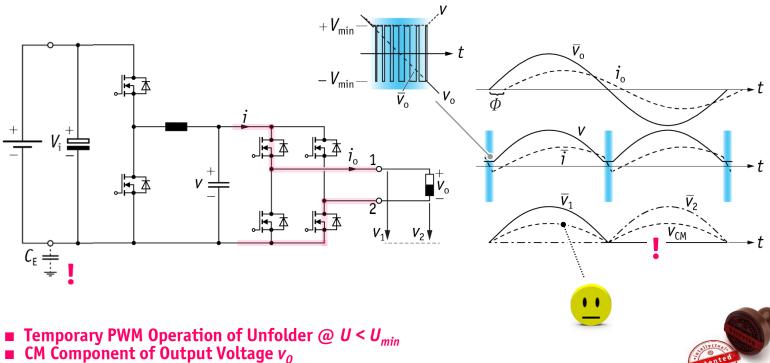
fraza Fraza d.o.o. ... HF Inductor Technology


Acknowledgment

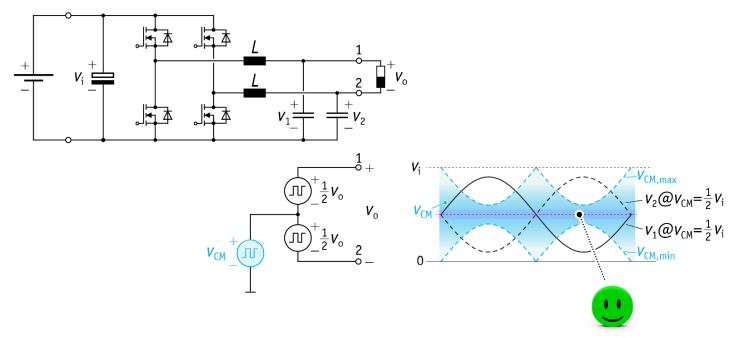
- Components
- Academic Award (10) _____ Donation (6)



Converter Topology Modulation

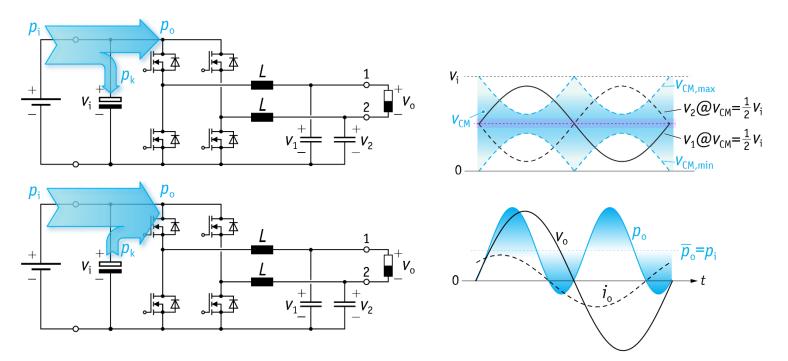


Derivation of Output Stage Topology (1)


• DC/|AC| Buck Converter & Output Frequency "Unfolder"

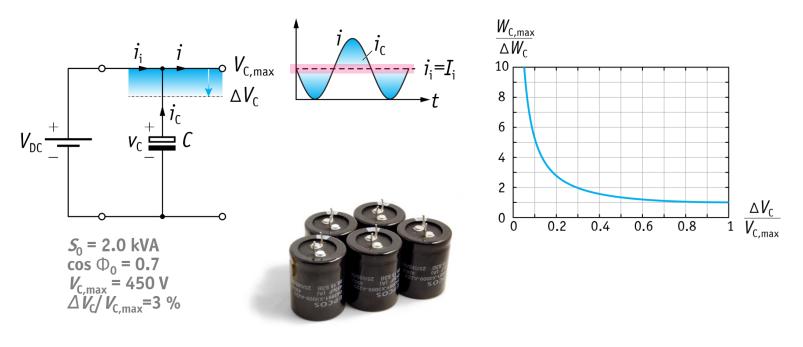
Derivation of Output Stage Topology (2)

- Full-Bridge Output Stage
- Modulation of Both Bridge Legs


- DM Component of u_1 and u_2 Defines Output u_0 CM Component of u_1 and u_2 Represents Degree of Freedom of the Modulation (!)

DC-Side Power Pulsation Buffering

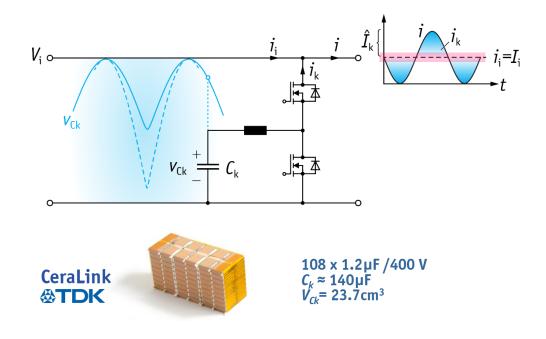
• Compensation of 120Hz Output Power AC Component → Constant DC Supply Current


- Parallel or Series / Passive or Active Buffer Concepts
- Parallel Approach for Limiting Voltage Stress on Full-Bridge Semiconductors

DC-Side Passive Power Pulsation Buffer

• Electrolytic Capacitor

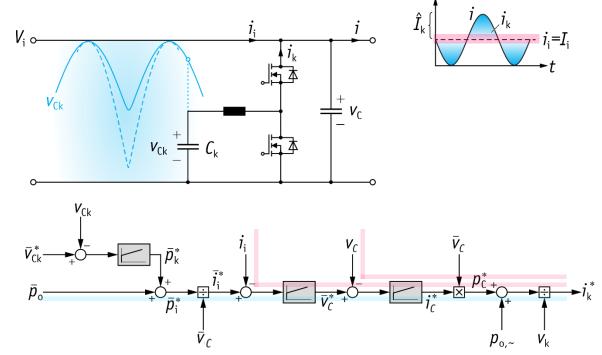
C > 2.2mF / 166 cm³ \rightarrow Consumes 1/4 of Allowed Total Allowed Volume !



DC-Side Active Power Pulsation Buffer

- Large Voltage Fluctuation Foil or Ceramic Capacitor Buck-Type (Lower Voltage Levels) or Boost-Type DC/DC Interface Converter

Significantly Lower Overall Volume Compared to Electrolytic Capacitor

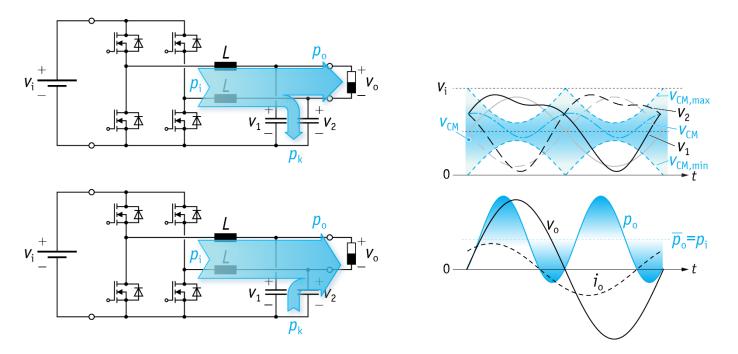


DC-Side Active Power Pulsation Buffer

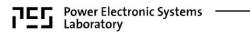
• Cascaded Control Structure

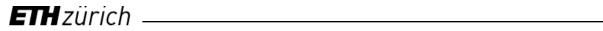
P-Type Resonant Controller

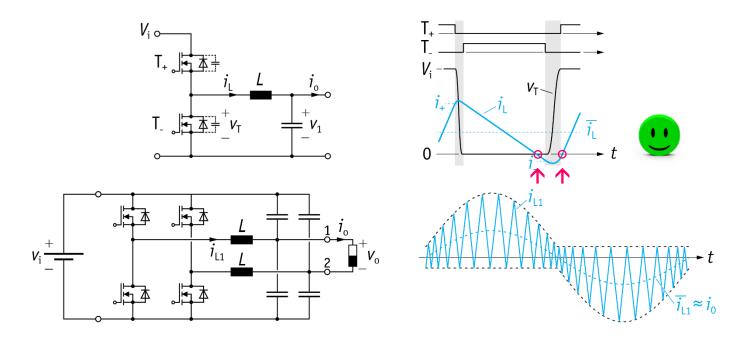
ETH zürich


- Feedforward of Output Power Fluctuation
- Underlying Input Current (i_i) / DC Link Voltage (u_c) Control

AC-Side Power Pulsation Buffering

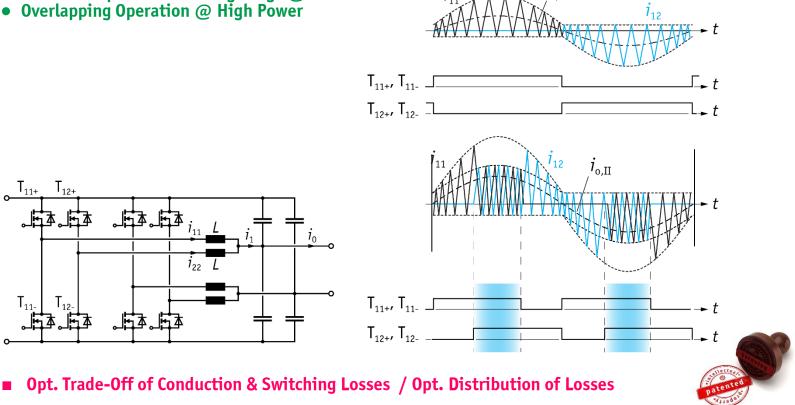

● Compensation of 120Hz Output Power AC Component → Constant DC Supply Current


- CM Reactive Power of Output Filter Capacitors used for Comp. of Load Power Pulsation
- CM Reactive Power prop. 2 C
- DM Reactive Power prop. ¹/₂ C


Modulation

ZVS of Output Stage / TCM Operation

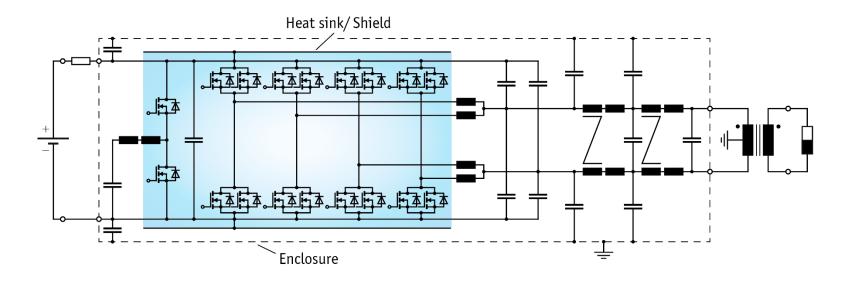
• TCM Operation for Resonant Voltage Transition @ Turn-On/Turn-Off



- Requires Only Measurement of Current Zero Crossings, i = 0 Variable Switching Frequency Lowers EMI

- Interleaving of 2 Bridge Legs per Phase Volume / Filtering / Efficiency Optimum
 Interleaving in Space & Time Within Output Period
- Alternate Operation of Bridge Legs @ Low Power

i_{o,I}


Implemented —— Converter Topology / —— Output Control

Final Converter Topology

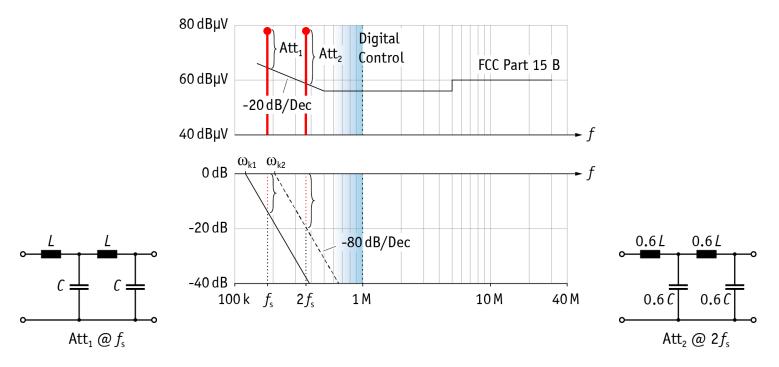
- Interleaving of 2 Bridge Legs per Phase
- Active DC-Side Buck-Type Power Pulsation Buffer
- 2-Stage EMI AC Output Filter

- **ZVS of All Bridge Legs** @ Turn-On/Turn-Off in Whole Operating Range (4D TCM Interleaving)
- Heatsinks Connected to DC Bus / Shield to Prevent Cap. Coupling to Grounded Enclosure

17/48

Technologies

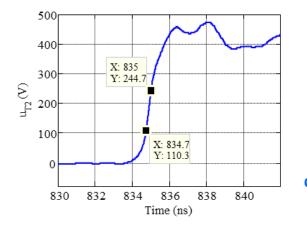
Power Semiconductors Passives Cooling DSP/FPGA

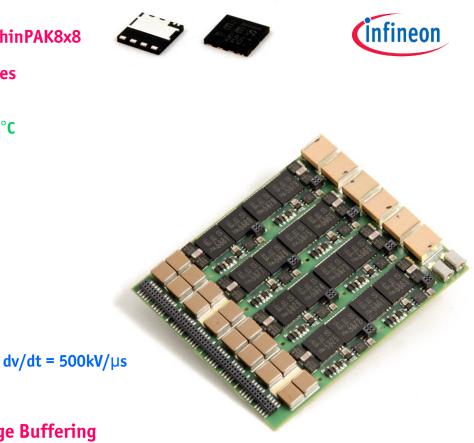

 \rightarrow

VDE

Selection of Switching Frequency

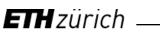
• Significant Reduction in EMI Filter Volume for Increasing Sw. Frequency




- Doubling Sw. Fequ. *f*_s Cuts Filter Volume in Half Upper Limit due to Digital Signal Processing Delays / Inductor & Sw. Losses Heatsink Volume

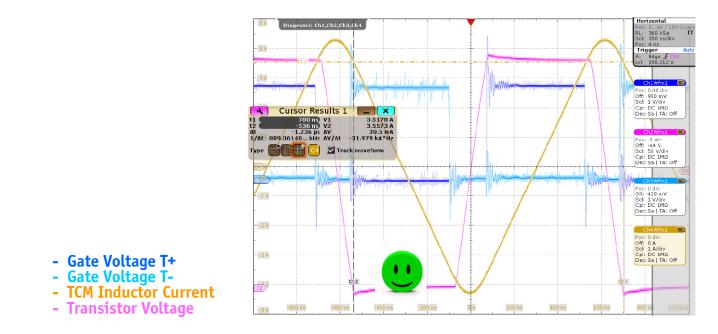
- 600V IFX Normally-Off GaN GIT ThinPAK8x8
 2 Parallel Transistors / Switch
- Antiparallel CREE SiC Schottky Diodes
- 1.2V typ. Gate Threshold Voltage
 55 mΩ R_{DS,on} @ 25°C, 120mΩ @ 150°C
 5Ω Internal Gate Resistance

CeraLink Capacitors for DC Voltage Buffering


DE

Advanced Gate Drive (1)

- Fixed Negative Turn-off Gate Voltage Independent of Sw. Frequency and Duty Cycle
- Extreme dv/dt Immunity (500 kV/µs) Due to CM Choke at Signal Isolator Input


■ Total Prop. Delay < 30ns incl. Signal Isolator, Gate Drive, and Switch Turn-On Delay

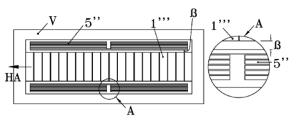
Advanced Gate Drive (2)

- Fixed Negative Turn-off Gate Voltage Independent of Sw. Frequency and Duty Cycle
- Extreme dv/dt Immunity (500 kV/µs) Due to CM Choke at Signal Isolator Input

• Triangular Current Mode (TCM) Operation at No Load \rightarrow ZVS and No Free Ringing of u_{T+} , u_{T-} or i_{L}

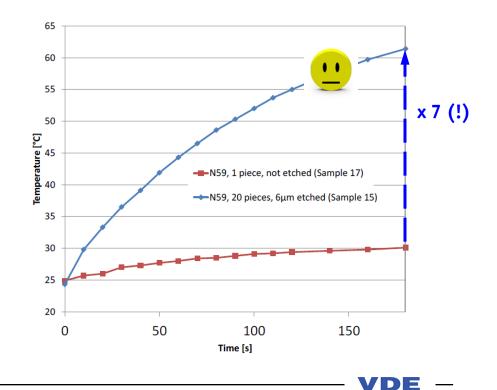
21/48

High Frequency Inductors (1)


- Multi-Airgap Inductor with Patented Multi-Layer Foil Winding Minimizing Prox. Effect
- Very High Filling Factor / Low High Frequency Losses Magnetically Shielded Construction Minimizing EMI
- Intellectual Property of F. Zajc / Fraza (2012)
- L= 10.5µH
- 2 x 8 Turns
- 24 x 80µm Airgaps
 Core Material DMR 51 / Hengdian
- 0.61mm Thick Stacked Plates

- 20 μm Copper Foil / 4 in Parallel
 7 μm Kapton Layer Isolation
 20mΩ Winding Resistance / Q=800
 Terminals in No-Leakage Flux Area

Dimensions - 14.5 x 14.5 x 22mm³


High Frequency Inductors (2)

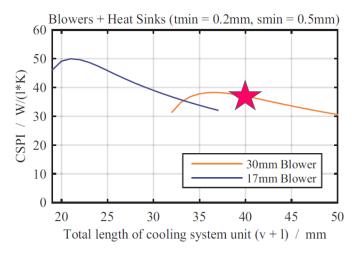
IEEE TRANSACTIONS ON MAGNETICS, VOL. MAG-11, NO. 1, JANUARY 1975

The Origin of the Increase in Magnetic Loss Induced by Machining Ferrites

JOHN E. KNOWLES

- Cutting of Ferrite Introduces Mechanical Stress in the Surface (5µm Layer)
- Significant Increase of the Loss Factor
- Reduction by Polishing / Etching

Comparison of Temp. Increase of a Bulk and a Sliced Sample @ 70mT / 800kHz

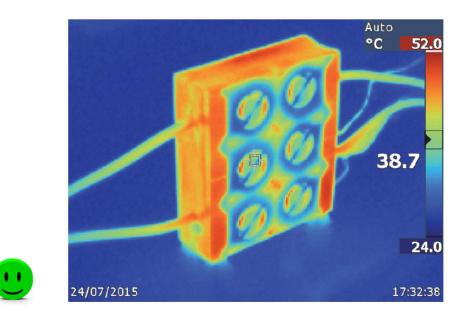


Thermal Management (1)

- 30mm Blowers with Axial Air Intake / Radial Outlet Full Optimization of the Heatsink Parameters
- 200um Fin Thickness

- 500um Fin Spacing
 3mm Fin Height
 10mm Fin Length
 CSPI = 37 W/(dm³.K)
 1.5mm Baseplate

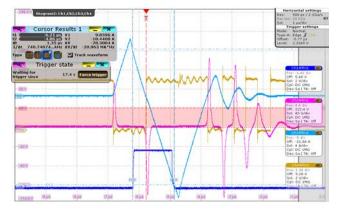
- CSPI_{eff}= 25 W/(dm³.K) Considering Heat Distribution Elements
 Two-Side Cooling → Heatsink Temperature = 52°C @ 80W (8W by Natural Convection)



DE

- CSPI = 37 W/(dm³.K)
 30mm Blowers with Axial Air Intake / Radial Outlet
 Full Optimization of the Heatsink Parameters
 CSPI_{eff}=25 W/(dm³.K) incl. Heat Cond. Layers

Two-Side Cooling \rightarrow Heatsink Temperature = 52°C @ 80W (8W by Natural Convection)

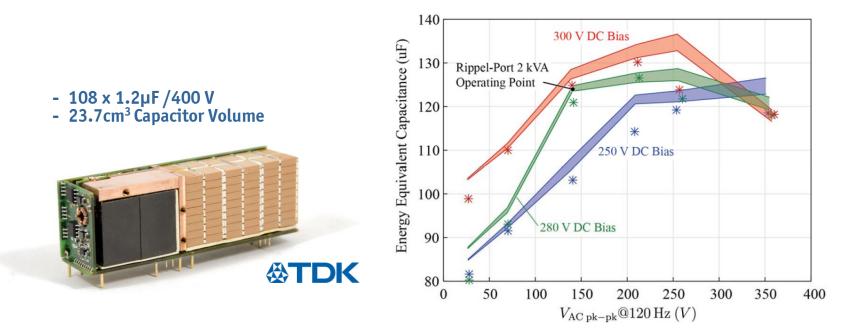




Control Board & i=0 Detection

- Fully Digital Control Overall Control Sampling Frequency of 25kHz TI DSC TMS320F28335 / 150MHz / 179-pin BGA / 12mmx12mm Lattice FPGA LFXP2-5E / 200MHz / 86-pin BGA / 8mmx8mm

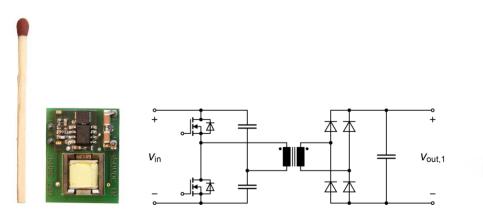
- TCM Current / Induced Voltage / Comparator Output


i=0 Detection of TCM Currents Using R4/N30 Saturable Inductors
 Galv. Isolated / Operates up to 2.5MHz Switching Frequency / <10ns Delay

Power Pulsation Buffer Capacitor

- High Energy Density 2^{nd} Gen. $400V_{DC}$ CeraLink Capacitors Utilized as Energy Storage Highly Non-Linear Behavior \rightarrow Opt. DC Bias Voltage of 280VDC •
- Cap. Losses of 16W @ 2kVA Output Power

■ Effective Large Signal Capacitance of C ≈140µF



Auxiliary Supply & Measurements

- ZVS Constant 50% Duty Cycle Half Bridge with Synchr. Rectification
- Compact / Efficient / Low EMI •

- 10W Max. Output Power
 380V...450V Input Operating Range
 13.6V...16.8V DC Output in Full Inp. Voltage / Output Power Range
 90% Efficiency @ P_{max}

19mm x 24mm x 4.5mm (2cm³ Volume)

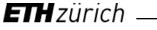
Experimental Results

Hardware Output Voltage/Input Current Quality Thermal Behavior Efficiency EMI ____

-

DE

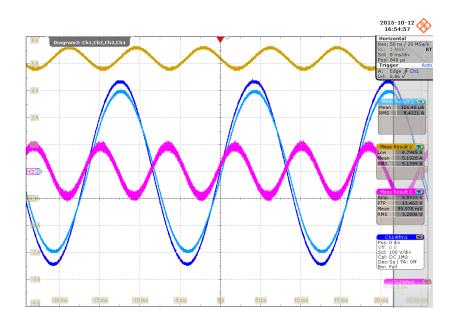
Little-Box Prototype I


Electrolytic Capacitors as DC-Side Power Pulsation Buffer

- 7.3 kW/dm³ 9.7cm x 9.1cm x 3.1cm
- 97,5% Efficiency @ 2kW
- T_c=58°C @ 2kW
- $-\Delta u_{\rm DC} = 2.85\%$
- $-\Delta i_{\rm DC}$ = 15.4% THD+N_U = 2.6% THD+N_I = 1.9%

Compliant to All Original Specifications (!)

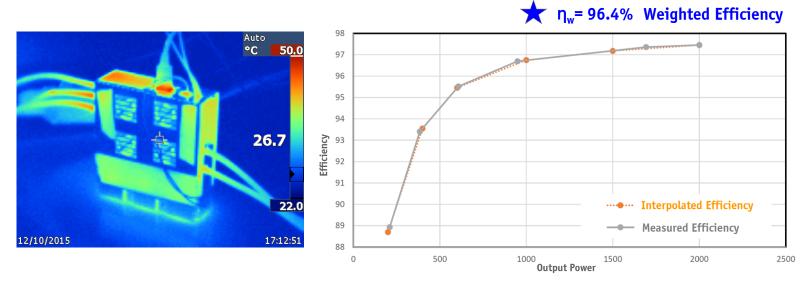
- No Low-Frequ. CM Output Voltage Component
- No Overstressing of Components
- All Own IP / Patents



VDE

Measurement Results I-(1)

• Electrolytic Capacitors as DC-Side Power Pulsation Buffer


DC Input Current DC Voltage Ripple Output Voltage Output Current

• Compliant to All *Original* Specifications (!)

Measurement Results I-(2)

• Electrolytic Capacitors as DC-Side Power Pulsation Buffer


• Heating of System Lower than Specified Limit ($T_{C,max}$ = 60°C @ T_{amb} = 30°C)

Measurement Results I-(3)

• Electrolytic Capacitors as DC-Side Power Pulsation Buffer

• Compliant to All *Original* Specifications (!)

Little-Box Prototype II-(1)

Active DC-Side Power Pulsation Buffer

- 8.2 kW/dm³
- 8.9cm x 8.8cm x 3.1cm
- 96,3% Efficiency @ 2kW
- T_c=58°C @ 2kW
- $-\Delta u_{\rm DC} = 1.1\%$
- $\Delta i_{\rm DC}^{\rm e} = 2.8\%$ THD+N_U = 2.6%
- $THD + N_T = 1.9\%$

Compliant to All Original Specifications (!)

- No Low-Frequ. CM Output Voltage Component
- No Overstressing of Components
- All Own IP / Patents

34/48

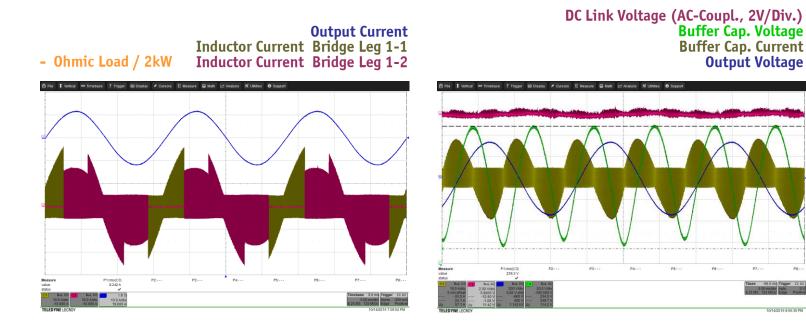
Little-Box Prototype II-(2)

Active DC-Side Power Pulsation Buffer

- 8.2 kW/dm³
- 8.9cm x 8.8cm x 3.1cm
- 96,3% Efficiency @ 2kW
- T_c=58°C @ 2kW
- $-\Delta u_{\rm DC} = 1.1\%$
- $\Delta i_{\rm DC}^{\rm e} = 2.8\%$ THD+N_U = 2.6%
- $THD + N_T = 1.9\%$

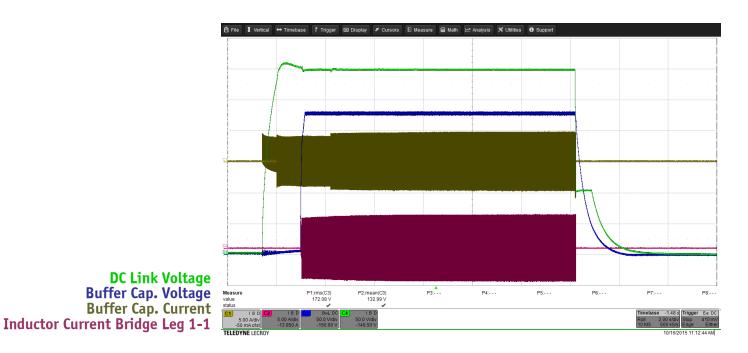
Compliant to All Original Specifications (!)

- No Low-Frequ. CM Output Voltage Component
- No Overstressing of Components
- All Own IP / Patents

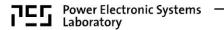

ETH zürich

Measurement Results II-(1)

• Active DC-Side Power Pulsation Buffer


• Compliant to All *Original* Specifications (!)

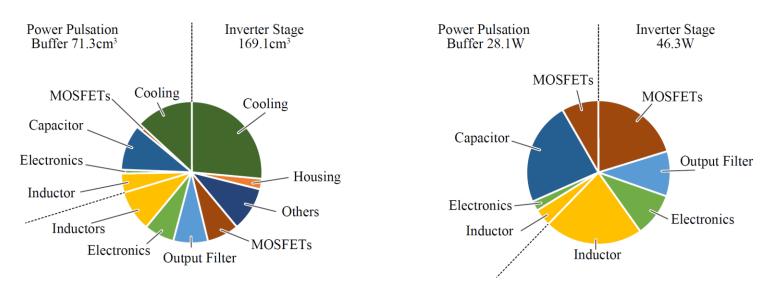
Measurement Results II-(2)


• Active DC-Side Power Pulsation Buffer

Start-Up and Shut-Down (No Load Operation)

Evaluation

Volume Distribution Loss Distribution



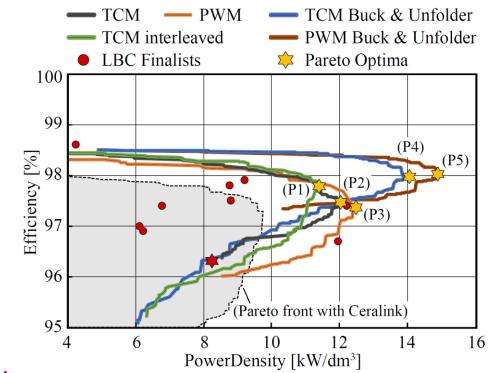
Evaluation / Optimization Potential

Volume Distribution (240cm³)

- Large Heatsink (incl. Heat Conduction Layers)

- Large Losses in Power Fluctuation Buffer Capacitor (!)
 TCM Causes Relatively High Conduction & Switching Losses @ Low Power
 Relatively Low Switching Frequency @ High Power Determines EMI Filter Volume

Optimization


Full-Bridge TCM Interleaved Full-Bridge TCM Not Interleaved Full-Bridge PWM Buck-Stage & Unfolder

Multi-Objective Optimization Results

• 135 W/in³ \rightarrow 230 W/in³ (!) @ CSPI = 25 W/(dm³.K)

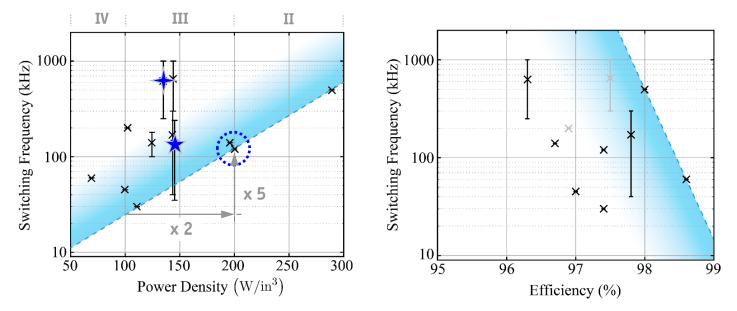
- No Interleaving
- PWM / Constant Switching Frequency
- **X6S Capacitor Technology Employed in Power Pulsation Buffer**

VDE

Other Finalists

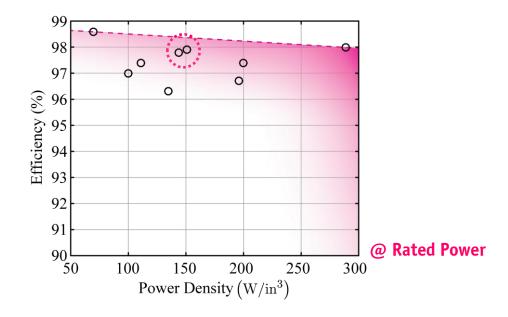
Topologies Switching Frequencies Power Density / Efficiency Comparison

> For Detailed Descriptions: www.LittleBoxChallenge.com


 \rightarrow

Finalists - Performance Overview

18 Finalists (3 No-Shows)
7 Groups of Consultants / 7 Companies / 4 Universities


- 70...300 W/in³
- 35 kHz... 500kHz... 1 MHz (up to 1MHz: 3 Teams)
- Full-Bridge or DC/|AC|Buck Converter + Unfolder
- Mostly Buck-Type Active Power Pulsation Filters (Ceramic Caps of Electrolytic Caps)
- GaN (11 Teams) / SiC (2 Teams) / Si (2 Teams)

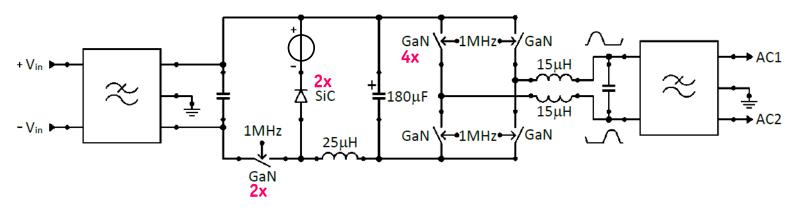
ETH zürich

Finalists - Performance Overview

18 Finalists (3 No-Shows)7 Groups of Consultants / 7 Companies / 4 Universities

70...300 W/in³

- 35 kHz... 500kHz... 1 MHz (up to 1MHz: 3 Teams)
- Full-Bridge or DC/|AC|Buck Converter + Unfolder
- Mostly Buck-Type Active Power Pulsation Filters (Ceramic Caps of Electrolytic Caps)
- GaN (11 Teams) / SiC (2 Teams) / Si (2 Teams)

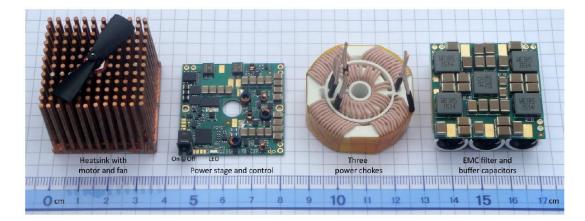


Category I: 300 – 400 W/in³ (1 Team)

• "Over the Edge"

- Hand-Wound Overstressed & Too Small Electrolytic Capacitors (210uF/400V)
- No Voltage Margin of Power Semiconductors (450V GaN, Hard Switching)
- 50V Voltage Source for Semicond. Voltage Stress Reduction
- Low-Frequ. CM AC Output Component

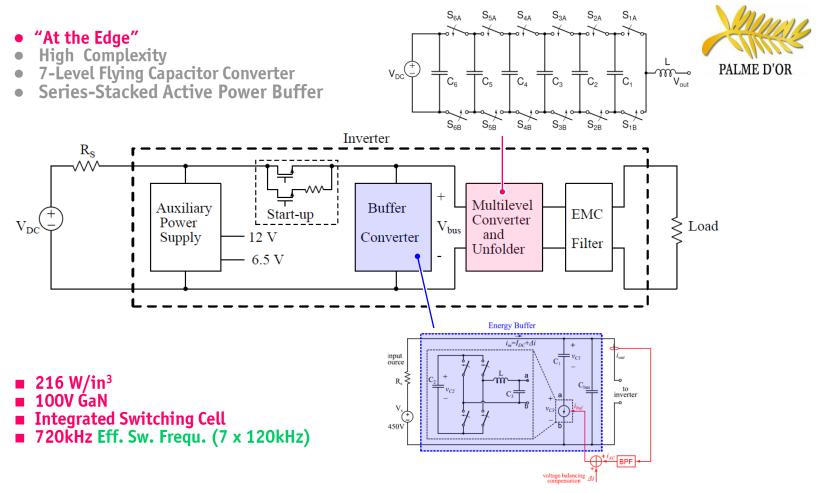
- Alternate Switching of Full-Bridge Legs
- Input Cap. of Full-Bridge Used for Power Pulsation Buffering
- 256 W/in³ (400 W/in³ Claimed) / 1MHz
- Multi-Airgap Toroidal Inductors (3F46, C_p≈1.5pF)
- Bare Dies Directly Attached to Pin-Fin Heatsink
- High Speed Fan (Mini Drone Motor & Propeller)



Category I: 300 – 400 W/in³ (1 Team)

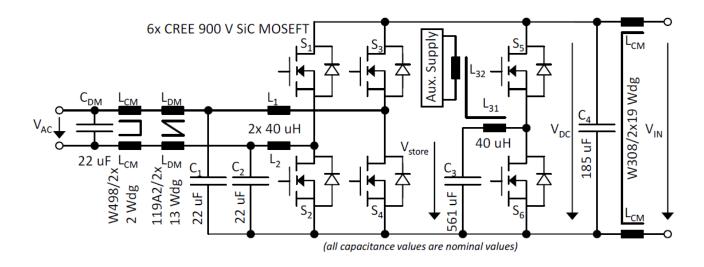
• "Over the Edge"

- Hand-Wound Overstressed Electrolytic Capacitors (210uF (?)/400V)
- No Voltage Margin of Power Semiconductors (450V GaN, Hard Switching)
- 50V Voltage Source for Semicond. Voltage Stress Reduction



- Alternate Switching of Full-Bridge Legs
- Input Cap. of Full-Bridge Used for Power Pulsation Buffering
- 256 W/in³ (400 W/in³ Claimed) / 1MHz
- Multi-Áirgap Toroidal Inductors (3F46, C_p≈1.5pF)
 Bare Dies Directly Attached to Pin-Fin Heatsink
- High Speed Fan (Mini Drone Motor & Propeller)

Category II: 200 – 300 W/in³ (4 Teams) – Example #1

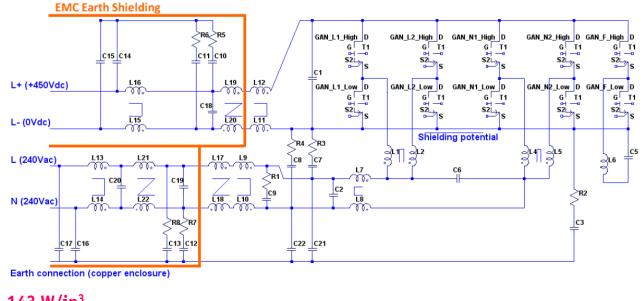

ETH zürich

VDE

Category II: 200 – 300 W/in³ (4 Teams) – Example #2

• "At the Edge"

- Very Well Engineered Assembly (e.g. 3D-Printed Heatsink w. Integr. Fans, 1 PCB Board, etc.)
- No Low-Frequ. Common-Mode AC Output Component

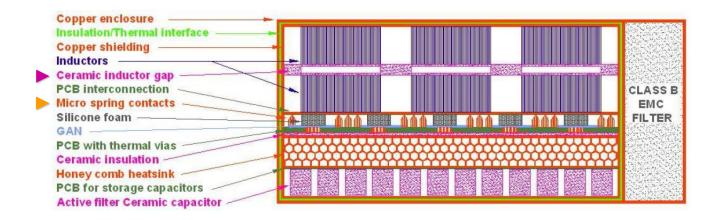

- **201W / in³**
- Multi-Airgap (8 Gaps) Inductors
- 900V SiC @ 140kHz (PWM, Soft & Hard Switching)
- Buck-Type Active DC-Side Power Pulsation Filter / Ceramic Capacitors (X6S)

Category III: 100 – 200 W/in³ (8 Teams) – Example

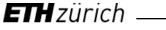
- "Advanced Industrial"
- Sophisticated 3D Sandwich Assembly incl. Cu Honeycomb Heatsink
- Shielded Multi-Stage EMI Filter @ DC Input and AC Output
- No Low-Frequ. Common-Mode AC Output Component

143 W/in³

ETH zürich

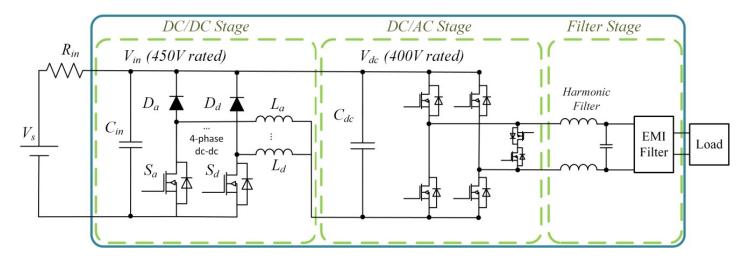

- GaN @ ZVS (35kHz...240kHz)
- 2 x Interleaving for Full-Bridge Legs
- Buck-Type DC-Side Active Power Pulsation Filter (<150µF)</p>

DE


Category III: 100 – 200 W/in³ (8 Teams) – Example

- "Advanced Industrial"
- Sophisticated 3D Sandwich Assembly incl. Cu Honeycomb Heatsink
- Shielded Multi-Stage EMI Filter @ DC Input and AC Output
- No Low-Frequ. Common-Mode AC Output Component

- 143 W/in³
- GaN @ ZVS (35kHz...240kHz)
 2 x Interleaving for Full-Bridge Legs
- Buck-Type DC-Side Active Power Pulsation Filter (<150µF)



Category IV: 50 – 100 W/in³ (1 Team)

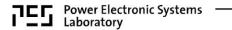
- "Industrial"
- 400V_{max} Full-Bridge Input Voltage DC-Link Cap. Used as Power Pulsation Buffer (470uF)
- GaN Transistors / SiC Diodes (400kHz DC/DC, 60kHz DC/AC)
- Multi-Stage EMI Filter @ AC Output and L_{CM} + Feed-Trough C_{CM} @ DC Inp. (Not Shown)

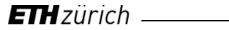
- ≈70 W/ in³
- 98% CEC Efficiency
- 4.4% DC Input Current Ripple
- 54°C Surface Temp. / Cooling with 10 Mirco-Fans

Conclusions

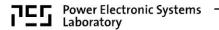
- There's NO Silver Bullet
- >200W/in³ (12kW/dm³) Achievable
- f_s < 150kHz (Constant) Sufficient
- SiC Can Also Do It
- ZVS (Partial) Helps
- Full-Bridge Output Stage
- Active Power Pulsation Buffer (Buck-Type, X6S Cap.)
- Conv. EMI Filter Structure
- Multi-Airgap Litz Wire Inductors
- DSP Can Do It (No FPGA)
- Careful Heat Management (Adv. Heat Sink, Heat Distrib., 2-Side Integr. Cooling, etc.)
- Careful Mechanical Design (3D-CAD, Single PCB, Avoid Connectors, etc.)

Overall Summary


- No (Fundamentally) New Approach
- Passives & 3D-Packaging are Finally Defining the Power Density
 CIPS (!)
 Competition Timeframe Too Short for Advanced Integration
- Building a Full System Not Possible for Many Universities High Drop Out Rate



BUT a Set of Core **Concepts & Technologies**



Thank You!

