ETH zürich

CIPS 2018

Johann W. Kolar et al.

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

ETH zürich

CIPS 2018

J. W. Kolar, D. Neumayr, D. Bortis, M. Guacci, J. Azurza

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Outline

- ► Google Little Box Challenge
- Requirements
 Little Box 1.0
- **Further Analysis & New Approach**
- Adv. Measurement Techniques
- New Circuit Topology
- Little Box 2.0
- Conclusions

M. Kasper 0. Knecht Acknowledgement F. Krismer

1/92

Google Little Box Challenge

Requirements Little Box 1.0 Other Finalists

Google **IEEE**

LITTLE BOX

- Design / Build the 2kW 1-OSolar Inverter with the Highest Power Density in the World
- Power Density > 3kW/dm³ (50W/in³)
- Efficiency > 95%
- Case Temp. < 60°C
- EMI FCC Part 15 B

■ Push the Forefront of New Technologies in R&D of High Power Density Inverters

VDE

The Grand Prize

- Highest Power Density (> 50W/in³)
 Highest Level of Innovation

■ Timeline

- Challenge Announced in Summer 2014
 2000+ Teams Registered Worldwide
 100+ Teams Submitted a Technical Description until July 22, 2015
- 18 Finalists (3 No-Shows)

Selected Converter Topology

- Full-Bridge Output Stage
- Modulation of Both Bridge Legs

- DM Component of u_1 and u_2 Defines Output Voltage u_0 No Low-Frequency CM Component of u_1 and u_2 (Different to e.g. 1- Φ PFC Rectifier Systems !)

4/92

Triangular Current Mode (TCM) ZVS Operation

• TCM Operation for Resonant Voltage Transition @ Turn-On/Turn-Off

- Requires Only Measurement of Current Zero Crossings, i = 0High f_s Around i = 0 Challenging for Digital Control Variable Sw. Freq. f_s Lowers EMI

i=0 Detection

• Saturable Inductor – Toroidal Core R4 x 2.4 x 1.6, EPCOS (4mm Diameter) – Core Material N30, EPCOS

Operation Tested up to 2.5MHz Switching Frequency

6/92

VDE

T₁₂₋

- Interleaving of 2 Bridge Legs per Phase Volume / Filtering / Efficiency Optimum
- Interleaving in Space & Time Within Output Period
 Alternate Operation of Bridge Legs @ Low Power
- Overlapping Operation @ High Power

i₂₂ L

Opt. Trade-Off of Conduction & Switching Losses / Opt. Distribution of Losses

 T_{11-}

DC-Side Passive Power Pulsation Buffer

• Electrolytic Capacitor

• C > 2.2mF / 166 cm³ \rightarrow Consumes 1/4 of Allowed Total Allowed Volume !

8/92

ETH zürich

DC-Side Active Power Pulsation Buffer

- Large Voltage Fluctuation Foil or Ceramic Capacitor
- Buck-Type (Lower Voltage Levels) or Boost-Type DC/DC Interface Converter

Significantly Lower Overall Volume Compared to Electrolytic Capacitor

DC-Side Active Power Pulsation Buffer

• Cascaded Control Structure

- P-Type Resonant Controller
- Feedforward of Output Power Fluctuation
- Outer Input Current (i_i) / Underlying DC Link Voltage (v_c) Control

 \mathbf{D}

ETH zürich

DE

High dv/dt-Immunity Gate Drive

- Fixed Negative Turn-Off Gate Voltage Independent of Sw. Frequency and Duty Cycle
- Extreme dv/dt-Immunity (500 kV/µs) Due to CM Choke at Signal Isolator Input
- < 30ns Overall Prop. Delay

12/92

DE

EMI Filter Topology (1)

• Conventional Filter Structure

- CM Cap. Limited by Earth Current Limit Typ. 3.5mA for PFC Rectifiers (GLBC: 5mA, later 50mA !)
- Large CM Inductor Needed Filter Volume Mainly Defined by CM Inductors

ETH zürich

EMI Filter Topology (2)

- Filter Structure with Internal CM Capacitor Feedback
- Filtering to DC- (and Optional to DC+)

- No Limitation of CM Capacitor C_1 Due to Earth Current Limit $\rightarrow \mu$ F Instead of nF Can be Employed
- Allows Downsizing of CM Inductor and/or Total Filter Volume

ETH zürich

DE

Final Converter Topology

- Interleaving of 2 Bridge Legs per Phase
- Active DC-Side Buck-Type Power Pulsation Buffer
- First Stage AC Filter Caps Connected to DC-
- 2-Stage EMI AC Output Filter

- ZVS of All Bridge Legs @ Turn-On/Turn-Off in Whole Operating Range (4D-TCM-Interleaving) Heatsinks Connected to DC Bus / Shield to Prevent Cap. Coupling to Grounded Enclosure

15/92

Power Pulsation Buffer EMI Output Filter

Power Electronic Systems Laboratory

High Frequency Inductors (1)

- Multi-Airgap Inductor with Multi-Layer Foil Winding Arrangement Minim. Prox. Effect
- Very High Filling Factor / Low High Frequency Losses Magnetically Shielded Construction Minimizing EMI
- Intellectual Property of F. Zajc / Fraza
- L= 10.5µH
- 2 x 8 Turns

- 24 x 80µm Airgaps
 Core Material DMR 51 / Hengdian
 0.61mm Thick Stacked Plates
 20 µm Copper Foil / 4 in Parallel
 7 µm Kapton Layer Isolation
 20mΩ Winding Resistance / Q≈600
 Terminals in No-Leakage Flux Area

Dimensions - 14.5 x 14.5 x 22mm³

High Frequency Inductors (2)

- High Resonance Frequency → Inductive Behavior up to High Frequencies
- Extremely Low AC-Resistance → Low Conduction Losses up to High Frequencies
- High Quality Factor

Shielding Eliminates HF Current through the Ferrite → Avoids High Core Losses
 Shielding Increases the Parasitic Capacitance

公TDK

High Frequency Inductors (3)

■ Comparison of Temp. Increase of a Bulk and a Sliced Ferrite Sample @ 70mT / 800kHz

Knowles (1975!)

- **Cutting of Ferrite Introduces Mech. Stress** Significant Increase of the Loss Factor Further Treatment Still to be Clarified

DE

Thermal Management (1)

- 30°C max. Ambient Temperature
 60°C max. Allowed Surface and Air Outlet Temperature
- Evaluation of Optimum Heatsink Temp. for Thermal Isolation of Converter

Minimum Volume Achieved w/o Thermal Isolation with Heatsink @ max. Allowed Surface Temp.

Thermal Management (2)

• Overall Cooling Performance Defined by Selected Fan Type and Heatsink

- Optimal Fan and Heat Sink Configuration Defined by Total Cooling System Length
 Cooling Concerns with Discuss Selected A Userbary CODI for Lower Mounting System
- Cooling Concept with Blower Selected \rightarrow Higher *CSPI* for Larger Mounting Surface

- 30mm Blowers with Axial Air Intake / Radial Outlet
- Full Optimization of the Heatsink Parameters •
- 200um Fin Thickness
- 500um Fin Spacing
- 3mm Fin Height
- 10mm Fin Length
- CSPI = 37 W/(dm³.K) 1.5mm Baseplate

- CSPI_{eff}= 25 W/(dm³.K) Considering Heat Distribution Elements
 Two-Side Cooling → Heatsink Temperature = 52°C @ 80W (8W by Natural Convection)

21/92

Little Box 1.0

- System Employing Active CeraLink[™] 1-⊕ Power Pulsation Buffer
- 8.2 kW/dm³
- 8.9cm x 8.8cm x 3.1cm
- *f_s* = 250kHz ... 1MHz 96,3% Efficiency @ 2kW
- *T_c*=58°C @ 2kW

- $\begin{array}{l} \Delta u_{\rm DC} = \ 1.1\% \\ \Delta i_{\rm DC} = \ 2.8\% \\ \ THD + N_U = \ 2.6\% \\ \ THD + N_I = \ 1.9\% \end{array}$
- Compliant to All "Original" Specifications (!)
- *i*_{gnd} < 5mA (!)
 No Low-Frequ. CM Output Voltage Component
 No Overstressing of Components
- All Own IP / Patents

VDE

Little Box 1.0

- System Employing Active CeraLink[™] 1-⊕ Power Pulsation Buffer
- 8.2 kW/dm³
- 8.9cm x 8.8cm x 3.1cm
- f_s = 250kHz ... 1MHz 96,3% Efficiency @ 2kW T_c=58°C @ 2kW

- $\begin{array}{l} \Delta u_{\rm DC} = \ 1.1\% \\ \Delta i_{\rm DC} = \ 2.8\% \\ \ THD + N_U = \ 2.6\% \\ \ THD + N_I = \ 1.9\% \end{array}$
- Compliant to All "Original" Specifications (!)
- *i*_{gnd} < 5mA (!)
 No Low-Frequ. CM Output Voltage Component
 No Overstressing of Components
- All Own IP / Patents

Measurement Results (1)

- System Employing Active CeraLink[™] 1-⊕ Power Pulsation Buffer
- Ohmic Load / 2kW

Compliant to All Specifications

Measurement Results (2)

• System Employing Active CeraLink[™] 1-⊕ Power Pulsation Buffer

- Buffer Cap. Voltage (50V/div) Buffer Cap. Current (10A/div) DC Inp. Curr. (AC Coupl. 500mA/div) DC Link Voltage (AC Coupl. 1V/div)
- Stationary Operation @ 2kW Output Power

Measurement Results (3)

• System Employing Active CeraLink[™] 1-⊕ Power Pulsation Buffer

■ Rel. Low Part Load Efficiency → Rel. High Output Power Independent Loss Components

Volume & Loss Distribution

Volume Distribution (240cm³)

- Large Heatsink (incl. Heat Conduction Layers)
- Large Losses in Power Fluctuation Buffer Capacitor (!)
- TCM Causes Relatively High Conduction & Switching Losses @ Low Power
 Relatively Low Switching Frequency @ High Power Determines EMI Filter Volume

ETH zürich

DE

Finalists - Performance Overview

- 18 Finalists (3 No-Shows)
- 7 Groups of Consultants / 7 Companies / 4 Universities

- **70...300** W/in³
- 35 kHz ... 500kHz ... 1 MHz (up to 1MHz: 3 Teams)
- Full-Bridge or DC/IAC|Buck Converter + Unfolder
- Mostly Buck-Type Active Power Pulsation Filters (Ceramic Caps of Electrolytic Caps)
- GaN (11 Teams) / SiC (2 Teams) / Si (2 Teams)

ETH zürich

DE

Note: Numbering of

Teams is Arbitrary

Power Electronic Systems Laboratory

Google Little Box Challenge Grand Prize Winner

Red Electric Devils

Olivier Bomboir, Paul Bleus, Fabrice Frebel, Thierry Joannes, Francois Milstein, Pierre Stassain, Christophe Geuzaine, Carl Emmerechts, Philippe Laurent

- No Low-Frequ. Common-Mode Output Voltage Comp. $\rightarrow i_{gnd} < 5mA$ (!) Buck-Type DC-Side Active Power Pulsation Filter (MLCC Cap. <150µF, 200V_{pp})

- 2 x Interleaved Bridge Legs for Each Half-Bridge
- DM Inductors (L₁/L₂ and L₄/L₅) and Series Connected CM Inductor (L₇/L₈)
 Single Open-Loop Hall Sensor Outp. Curr. Measurement + Observer-Based Curr. Reconstruction

ETH zürich

Red Electric Devils

★ 145 W/in³

- No Low-Frequ. Common-Mode Output Voltage Comp. $\rightarrow i_{gnd} < 5mA$ (!) Buck-Type DC-Side Active Power Pulsation Filter (MLCC Cap. <150µF, 200V_{pp})

- DSP & CPLD Control
- GaN Systems @ ZVS (35kHz ... 240kHz)
- Shielded Multi-Stage EMI Filter @ DC Input & AC Output

VDE

Red Electric Devils

★ 145 W/in³

• Variable Phase-Shift of the Half-Bridges (0° or 90°) Dep. on Duty Cycle

■ Selection of Opt. Phase Shift & Sw. Frequency for ZVS & Min. Size of Filter Ind. L_{CM} & L_{DM}

- 145 W/in³
- 95.4 % CEC Efficiency
- *i*_{gnd} < 5mA (!)
 CSPI = 22.6 W/(dm³.K) Heatsink & Axial Fan

Red Electric Devils

★ 145 W/in³

- **3D** Sandwich Assembly
- Single Ultra-Thin PCB Power / Control / Aux.
- Honeycomb Cu-Heatsink & Al Óxide Indúctor Cooling
- MMLC Storage Caps Rows Utilized as Heatsink "Fins" (1mm Gaps)

- 145 W/in³
- 95.4 % CEC Efficiency
- *i*_{gnd} < 5mA (!)
 CSPI = 22.6 W/(dm³.K) Heatsink & Axial Fan

Google Little Box Challenge Top 3 Finalist

Schneider Electric Team

Miao-xin Wang, Rajesh Ghosh, Srikanth Mudiyula, Radoslava Mitova, David Reilly, Milind Dighrasker, Sajeesh Sulaiman, Alain Dentella, Damir Klikic, Michael Hartmann

★ 100 W/in³

Schneider Global Team

- High Efficiency & Robustness Preferred
- PWM of Both Legs of Output Full-Bridge
- **DC-Side Series** (!) Active Power Puls. Filter \rightarrow Compensates 120Hz DC Link Volt. Variation •
- \rightarrow Larger Size
- \rightarrow No Low. Frequ. CM Output Voltage Comp.

- C_{DC} = 400uF / 450V 1/5 Volume Comp. to only Bulk Capacitors V_{dcinput} Ripple <10% (<30V_{pp}) @ Full Load
- Nanocrystalline CM Choke
- DC-Side & AC-Side EMI/RF Filter
 Q_{5...8} T0247 SiC MOSFETs, 45kHz of Both Legs

- $C_{DC_{RF}}=2 \times 1500 \text{uF}/25\text{V}, U_{DC_{RF}}=15\text{V}$ Only 52VA Processed Ripple Filter Power @ Rated Output (!) $Q_1/Q_2 \& Q_3/Q_4 R_{ds,on} = 2.2 \text{m}\Omega \text{ MOSFETs (40V, 100A), w/o Heatsink, } f_S = 130 \text{kHz of Both Legs}$ TI Piccolo DSP Control of Entire System / Open Loop Control of 120Hz Comp. Filter

ETH zürich

DE

Optimization of Little-Box 1.0

Adv. Modulation / Circuit Concepts Measurement of Buffer Cap. Performance Measurement of GaN ZVS & On-State Losses Measurement of Multi-Airgap Core Losses np-Pareto Optimization

- TCM \rightarrow ZVS but Large Current Ripple & Wide Frequency Variation
- **PWM** \rightarrow Const. Sw. Frequency but Hard Sw. @ Current Maximum
- Opt. Combination of TCM & PWM \rightarrow Optim. Variation of Local Sw. Frequ. Over Output Period
- Exp. Determination of Loss-Opt. Local Sw. Frequency f_{OFM} Considering DC/DC Conv. Stage

- Loss-Optimal Local Sw. Frequ. *f*_{OFM} for Given *V*_{DC} & Local *i*₀ & *v*_{c0}
 DC/AC Properties Calculated Assuming Local DC/DC Operation

- TCM → ZVS but Large Current Ripple & Wide Frequency Variation
- PWM → Const. Sw. Frequency but Hard Sw. @ Current Maximum
- Opt. Combination of TCM & PWM \rightarrow Optim. Frequ. Variation Over Output Period
- Exp. Determination of Loss-Opt. Sw. Frequency f_{0FM} Considering DC/DC Conv. Stage

- DC/AC Properties Calculated Assuming Local DC/DC Operation
- Loss-Optimal Local Sw. Frequ. f_{OFM} for Given V_{DC} & Local i_0 & v_{CO}

Eff. Optimal *f*_s-Modulation

- Resulting Time-Dependency of Optimal Sw. Frequ. & Power Loss
- Comparison with 140 kHz Const. Sw. Frequency PWM

Higher Average Switching Frequency f_s @ Light Loads
 Reduction of f_s @ Mains Voltage Peak (for Ohmic Load) for Sustaining ZVS

Eff. Optimal *f*_s-Modulation

• Optimal Inductor Current Envelope for Diff. Output Power Levels

Higher Average Switching Frequency f_s @ Light Loads
 Reduction of f_s @ Mains Voltage Peak (for Ohmic Load) for Sustaining ZVS

iTCM Inverter Topology

- TCM → Challenging Inductor Design → HF & LF Currents
 iTCM → Add. LC-Circuit / Separation of LF & HF Currents → L >> L_B (P. Jain, 2015)
- TCM

- iTCM :

- **Low Output Curr. Ripple / Noise** Variable f_s PWM Applicable, No i=0 Detect. Dedicated LF and HF Inductor Designs Possible

- iTCM

- → Reduced Filtering Effort
 → Simple Control Strategy (DSP)
 → Improved Conv. Efficiency

40/92

Measurements

Buffer Capacitor Losses / Cap. Power Semicond. ZVS & On-State Losses Ferrite Multi-Airgap Core Losses

CeraLink[™] vs. X6S (1)

- **Electrolytic Capacitors**
- X6S MLCC, 2.2μF, 450 V Class II CeraLink[™],1μF /2μF, 650 V CeraLink[™] Allows Op. @ 125°C

- \rightarrow Limited by Lifetime Current Limit
- → Highest Energy Density but Low Cap. @ High DC Bias
 → PLZT Ceramic, High Cap. @ High DC Bias
 → Very Low ESR @ High Frequencies

■ PPB Design Optimiz. Requires Large-Signal Capacitance and Power Loss Data in All Operating Points

D =

41/92

CeraLink[™] vs. X6S (2)

- **Electrolytic Capacitors**

- \rightarrow Limited by Lifetime Current Limit
- X6S MLCC, 2.2µF, 450 V Class II \rightarrow Highest Energy Density but Low Cap. @ High DC Bias
- CeraLinkTM,1µF/2µF, 650 V \rightarrow PLZT Ceramic, High Cap. @ High DC Bias CeraLinkTM Allows Op. @ 125°C \rightarrow Very Low ESR @ High Frequencies

Experimental Setup for Generation of DC Bias & Superimposed AC Voltage

CeraLink[™] vs. X6S (3)

Large-Signal 120Hz Excitation Reveals Large Hysteresis Significantly Higher Losses @ 120Hz Comp. to X6S MLCC ESR Drops Significantly @ Higher Temp. 36μF (27μF) Blocks of Prepackaged Single Chips CeraLink™

- Reliable Mech. Construction

ETH zürich

VDE

CeraLink[™] vs. X6S (4)

PPB Design Optimiz. Requires Large-Signal Capacitance and Power Loss Data in All Operating Points

ETH zürich

DE

Analysis of GaN Power Transistor ZVS Losses

- Little-Box 1.0 Experiments Indicated *Residual ZVS Losses of GaN Power Transistors*
- Losses Cannot be Explained by Remaining i_D , u_{DS} Overlap / Non-Ideal Gate Drive etc.

- Potentially Large Measurement Error for Electric Double-Pulse Sw. Loss Measurement
- Accuracy only Guaranteed by Direct Loss Measurement \rightarrow Calorimetric Approach

Analysis of GaN Power Transistor ZVS Losses

- Little-Box 1.0 Experiments Indicated Residual ZVS Losses of GaN Power Transistors
- Losses Cannot be Explained by Remaining i_D , u_{DS} Overlap / Non-Ideal Gate Drive

- Accuracy only Guaranteed by Direct Loss Measurement \rightarrow Calorimetric Approach

47/92

Calorimetric Measurement of ZVS Losses

- "Inductor in the Box" \rightarrow Accurate DC Inp. & Outp. Power Measurement, Subtr. of Ind. Losses
- "Bridge Leg in the Box" \rightarrow Direct Measurement of the Sum of Cond. & Sw. Losses

- "Bridge Leg in the Box" & Fast Measurement by C_{th}.∆T/∆t Evaluation
 DC/DC Operation @ High Sw. Frequency for Large Ratio of Sw. and Conduction Losses
 Subtraction of the Cond. Losses from Datasheet or Dir. Measurement

ETH zürich

Calorimetric Measurement of ZVS Losses

- "Bridge Leg in the Box" & Fast Measurement by C_{th} . $\Delta T/\Delta t$ Evaluation Subtraction of the Cond. Losses from Datasheet or Direct Measurement
- DC/DC Operation @ High Sw. Frequency for Large Ratio of Sw. and Conduction Losses •

- Isolated Temp. Measurement with Optical Fiber (GaAs Crystal) Instead of Thermocouple Calibration by On-State of T_1 and T_2 & DC Current Operation / DC Power Loss Measurement

Calibration of "Bridge Leg in the Box" Setup

- **Calibration** by On-State of T_1 and T_2 & DC Current Operation / DC Power Loss Measurement Identification of Thermal Cap. $C_{\rm th}$ and Thermal Resistance $R_{\rm th}$

- **DC** Power Loss Measurement Ensures High Accuracy
- Thermal Behavior for Short Measurement Times Mainly Determined by C_{th}

ETH zürich

Accurate On-State Voltage Measurement

- Clamping Diode for Limiting the On-State Voltage Measurement (OVM) Range to a Few Volts
- Subtraction of the SiC Diode Forward Voltage Drop for High Accuracy (2mV)

Only 50ns Blanking Time – OVM Circuit Can also be Used for Dynamic R_{DS,on} Measurement

Accurate On-State Voltage Measurement

- Clamping Diode for Limiting the On-State Voltage Measurement (OVM) to 2V
- Subtraction of the SiC Diode Forward Voltage Drop for High Accuracy (2mV)

Only 50ns Blanking Time – OVM Circuit Can also be Used for Dynamic R_{DS,on} Measurement

ZVS Loss Measurement Results (1)

- Measurement of Energy Loss per Switch and Switching Period
- GaN Enhancement Mode Power Transistor (600V, 70mΩ@25°C)

• Antiparallel CREE SiC Schottky Freewheeling Diode (600V, 3.3A)

- Switching w/ and w/o 100pF Parallel Low-Loss SMD Multilayer Ceramic Chip Capacitor (450V)
- dv/dt Measured in 10%...90% of Turn-off Voltage, Behavior @ at Low dv/dt Still to be Clarified

ETH zürich

ZVS Loss Measurement Results (2)

- Analysis of a *Permanently-Off Half-Bridge* Excited with Switch Node Voltage
- Measurement of Energy Loss per Switch and Switching Period

- Heating Indicates Losses in the Permanently-Off Devices
- Losses Comparable to the Losses of the Switching Half Bridge for Same dv/dt

ZVS Loss Measurement Results (2)

- Analysis of a *Permanently-Off Half-Bridge* Excited with Switch Node Voltage
- Measurement of Energy Loss per Switch and Switching Period

- Heating Indicates Losses in the Permanently-Off Devices
- Losses Comparable to the Losses of the Switching Half Bridge for Same dv/dt

ETH zürich

D =

Multi-Airgap Inductor

- Ferrite E-Core with 50 x 0.3mm Thick Stacked Plates as Center Post
- Power Loss of TCM Inductors Sign. Higher than Expected

• Analysis by Fraunhofer Shows Up to Factor 10 High Core Losses (!) \rightarrow "Mystery" Losses

• 1987 - S. Chandrasekar et al. \rightarrow Lapping Causes Greater Residual Stress than Grinding

■ Ferrite Properties in Surface Altered → Increase of Loss Factor

Subsurface Condition of Machined Ferrite Sempa

Materials Science and Technology

- Focused Ion Beam (FIB) Cut into Ferrite (3F4) Sample & Scanning Electron Microscopy (SEM)
 Polishing of Surface with Grain Sizes 2400 SiC → 4000 SiC → Colloidal Silica SiO₂

Polishing Removes 500 μ m of Surface \rightarrow Bulk Material Exposed

Bulk Ferrite also Exhibits Cavities \rightarrow Result of (Imperfect) Sintering Process

Thermometric Surface Loss Measurement

- Impression of Homogeneous Sin. Flux Density of Desired Ampl. / Frequ.
- Cap. Series Comp. for Lowering Impedance @ High Frequencies Measurement of *Transient* Temp. Change \rightarrow Calcul. of Losses

• Temperature Rise of ΔT = 1.5°...5°C Sufficient (Accuracy ±0.2°C), Fast Measurement (!)

Sample A

Test Fixture / Magnetic Circuit

- E-Type Fixture for Swift Installation of Diff. Samples (7mm x 6.4mm x 21.6mm)
- FEM Optimiz. of Dimensions Large Core Cross Section / Tapered Outer Limbs

- Therm. Insul. & Airgap Lattice Ensure Low Heat Flux to Ambient
- Measurement of Temp. Increase Over Time Allows to Verify Homog. Flux Density in Sample

61/92

62/92

D =

Identification of Therm. Parameters R_{th} , C_{th}

- DC Current Impressed in Ferrite, Voltage Control for Const. Power Dissipation as R_{DC}=R_{DC}(Temp.)
 Temperature Response of Sample Recorded (*FLIR A655sc W* with Close-Up Lens)
 Emissivity of Ferrite Determined Using Ferrite on Heating Plate (ε= 0.86)

*R*_{th} = 37.8 K/W Can be Neglected
 Obtained Parameter *C*_{th}=3.83J/K Close to *C*_{th} Calc. Based on Vendor Data (*C*_{th} = 3.6J/K)

Surface Loss Measurement Principle FERROXCUBE

- Hypothesis: Core Loss Density in Surface Layer Higher than in Bulk
- Thinner Plates → Higher Average Losses / Faster Temp. Rise
 Stacking of Plates Does NOT Affect Temperature Rise (!)

Surface Loss Density Can be Directly Calc. from Mat. Parameters / Geometry & Δt_{A} and Δt_{B}

Temperature Rise Recording

- Comparison of Solid 3F4 Sample (1 x 21.6mm) and Stacked Plates Sample (7 x 3mm) Sinusoidal Excitation *100mT / 400kHz* •

Thermal Image shown 25 Seconds After Turn-On of Magnetic Excitation

3F4 Solid Sample / 21.6mm
Measurement Results – Bulk Losses

- Comparison of Measurement Results and Datasheet Values, 3F4 @ 25°C
- Measurement Error Approx. ±10% (Worst Case)

Good Agreement with *Datasheet Values* / Vendor Steinmetz Parameters

Measurement Results – Surface Losses

۲

 $p_{Surf} = 0.0615 \times \left(\frac{f}{1 \text{Hz}}\right)^{1.13} \times \left(\frac{\hat{B}}{1 \text{T}}\right)^{3.47} \left(\frac{\text{mW}}{\text{cm}^2}\right)$

Measurement Error Approx. ±25% (Worst Case) Error Determined by Meas. Time & Temp. Reading Accuracy

Comp. of Steinmetz Parameters of Surface Losses & Bulk Losses $\beta_s > \beta$, $\alpha_s < \alpha$

"Critical Thickness" of Ferrite Plates

- "Critical Thickness" Reached for Equal Losses in Bulk & Surface
- Critical Plate Thickness is INDEPENDENT of Cross Section (!)

 $\gamma = 1$

800

Dependence on Flux Density Ampl. & Frequency ! Dependence on Material / Machining Process / Power Processing Treatment

1000

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

Optimization of Little-Box 1.0

ηρ-Pareto Front TCM vs. Large Ripple PMW The Ideal Switch is Not Enough (!) Design Space Diversity

Multi-Objective Optimization

- **Detailed** System Models \rightarrow Power Buffer/Output Stage/EMI Filter Multi-Domain Component Models \rightarrow Passives & GaN & SiC Semicond.
- Consideration of Very Large # of Degrees of Freedom

Pareto Optimization Shows Trade-Off Between Power Density and Efficiency

Little Box 1.0 np-Performance Limits

- Multi-Objective Optimization of Little-Box 1.0 (incl. CeraLinkTM \rightarrow X6S) Absolute Performance Limits (I) DSP/FPGA Power Consumption (II) Heatsink Volume @ (1- η) ۲

100 (a) **Transform** Realized Prototype (\mathbf{I}) 99 (b)---(c) Efficiency η [%] 66 86 $+1.65\frac{kW}{k}$ dm^3 .95<u>kW</u> +0.65% $\rho_{\rm max,X6S}$ dm³ +0.43% $\rho_{\rm max,Ceralink}$ **(**a) (III) 96 Realized LBC Prototype (b) CeraLink[™] Power Pulsation Buffer (c) X6S **Power Pulsation Buffer** 95 14 16 8 10 12 6 4 PowerDensity ρ [kW/dm³]

• Further Performance Improvement for Triangular Current Mode (TCM) \rightarrow PWM

Little Box 1.0 -- Electrolytic Cap. / Active PPB

- Analysis for Google Little Box Challenge Specification ΔV/V < 3%
 Efficiency Benefit of PPB only for ρ > 9kW/dm³

Electrol. Cap. Favorable for High Efficiency @ Moderate Power Density ($\Delta \eta$ = +0.5%) **Electrol.** Cap. Show Lower Vol. & Lower Losses if Large $\Delta V/V$ is Acceptable (e.g. for PFC Rectifiers)

ETH zürich

Little Box 1.0 -- TCM \rightarrow PWM

- Very High Sw. Frequency *f_s* of TCM Around Current Zero Crossings Efficiency Reduction due to Residual TCM Sw. Losses & Gate Drive Losses Reduction
- Wide $f_{\rm s}$ -Variation Represents Adv. & Disadvantage for EMI Filter Design •

PWM -- Const. Sw. Frequency & Lower Conduction Losses PWM @ Large Current Rippel -- ZVS in Wide Intervals

ETH zürich

Little Box 1.0 -- TCM \rightarrow PWM

- •
- Optimization for GaN GIT & No Interleaving Resulting Opt. Inductance of Output Inductor L=10µH (TCM), L=30µH (PWM@140 kHz) •

PWM vs. TCM \rightarrow Slightly Higher Max. Power Density @ Same Efficiency

VDE

The Ideal Switch is Not Enough (!)

Little Box 1.0 @ Ideal Switches -- TCM

- Multi-Objective Optimization of Little-Box 1.0 (X6S Power Pulsation Buffer) •
- Step-by-Štep Idealization of the Power Transistors Ideal Switches: $k_c = 0$ (Zero Cond. Losses); $k_s = 0$ (Zero Sw. Losses)

■ Analysis of Improvement of Efficiency @ Given Power Density & Maximum Power Density

Little Box 1.0 @ Ideal Switches -- PWM

- Multi-Objective Optimization of Little-Box 1.0 (X6S Power Pulsation Buffer)
- Step-by-Štep Idealization of the Power Transistors Ideal Switches: $k_c = 0$ (Zero Cond. Losses); $k_s = 0$ (Zero Sw. Losses)

Analysis of Improvement of Efficiency @ Given Power Density & Maximum Power Density

74/92

Power Electronic Systems Laboratory

L & *f_s* are Independent Variables (Dependent for TCM) Large Design Space Diversity (Mutual Compensation of HF and LF Loss Contributions)

ETH zürich

Little Box 2.0

DC/ AC Converter + Unfolder PWM vs. TCM incl. Interleaving ηρ-Pareto Limits for Non-Ideal Switches 3D-CAD Construction Exp. Results

Little Box 2.0 -- New Converter Topology (1)

- Alternative Converter Topology \rightarrow Only Single High Frequ. Bridge Leg + 60Hz-Unfolder
- HF Half-Bridge & Half-Bridge Unfolder DC/ AC OR Buck Converter + Full-Bridge Unfolder

- *v*_{AC1}, *v*_{AC2} More Diff. to Gen. but Add. DOF
 Higher Sw. Losses & Gate Drive Losses
- Zero Low-Frequ. CM-Noise (DC Comp. Only)
- C_{CM} Not Limited by Allowed Gnd Current

- *v*_{AC1} More Difficult to Generate/Control
 Lower Sw. Losses & Gate Drive Losses
- Higher CM-Noise (DC and n x 120Hz-Comp.)
- C_{CM}=150nF Allowed for 50mA Gnd Current

DE

77/92

Little Box 2.0 -- New Converter Topology (2)

- Alternative Converter Topology \rightarrow Only Single High Frequ. Bridge Leg + 60Hz-Unfolder
- HF Half-Bridge & Half-Bridge Unfolder DC/ AC OR Buck Converter + Full-Bridge Unfolder

- *v*_{c0} Easy to Generate/Control
 Higher Cond. Losses Due to FB-Unfolder
- Lower CM-Noise (DC & n x 120Hz-Comp.)
- C_{CM}=700nF Allowed for 50mA Gnd Current

- *v*_{AC1} More Difficult to Generate/Control
 Lower Sw. Losses & Gate Drive Losses
- Higher CM-Noise (DC and n x 120Hz-Comp.)
- C_{cm}=150nF Allowed for 50mA Gnd Current

Little Box 2.0 -- New Converter Topology (3)

- Alternative Converter Topology DC/ | AC | Buck Converter + Unfolder 60Hz-Unfolder (Temporary PWM for Ensuring Cont. Current Control) TCM or PWM of DC/ | AC | Buck-Converter

Full Optimization of All Converter Options for Real Switches / X6S Power Pulsation Buffer

D =

Little Box 2.0 -- Multi-Objective Optimization

- DC/ AC Buck Converter (Single PWM Bridge Leg) + Unfolder Shows Best Performance Full-Bridge Would Employ 2 Switching Bridge Legs Larger Volume & Losses Interleaving Not Advantageous Lower Heatsink Vol. / Larger Vol. of Switches and Inductors

• ρ = 250W/in³ (15kW/dm³) @ η = 98% Efficiency Achievable for Full Optimization

D

■ 60 mm x 50 mm x 45 mm = 135 cm³ (8.2in³) → 14.8 kW/dm³ (243 W/in³)

 \square

Experimental Results

Control Block Diagram Output Voltage / Input Current Quality Efficiency

Little Box 2.0 – Control Structure

Each Stage (Buck & Unfolder) Controlled with Cascaded Current and Voltage Loop
 Without Switching of Unfolder Control Like for Conventional Boost PFC Rectifier

87/92

DE

Little Box 2.0 – Experimental Results (1)

• Voltage Zero Crossing Behavior - With (Right) & Without (Left) Switching of Unfolder

Output Voltage (200 V/div) Output Current (10 A/div) Buck Inductor Current (10 A/div) Unfolder Output Voltage (200 V/div)

- Output Voltage & Current Fully Controlled Around Voltage Zero Crossings
- Slope of Buck Conv. Outp. Curr. can be Decreased Adv. for React. Loads (No Step-Change of DC Curr.)

Little Box 2.0 – Experimental Results (2)

• DC/|AC| Buck-Stage Output Voltage & Inductor Current

Resistive Load

Inductive Load

Capacitive Load

VDE

89/92

Little Box 2.0 – Experimental Results (3)

- **Performance of First DC**/ | AC | Buck Converter + Unfolder Prototype
- PWM Operation
- Without Power Pulsation Buffer

■ 98% for Res. Load Achievable if Cond. Losses of PCB (Copper Cross Sect.) & Unfolder (*R*_{ds,on}) are Red.

DE

Litte Box 2.0 – Performance Comparison

18 Finalists (3 No-Shows) 7 Groups of Consultants / 7 Companies / 4 Universities

99 Virginia Tech O (13)**Schneider Electric** 98 **o**⁽⁴⁾ 0 **O**₍₁₂₎ X **EPRI (Univ. of Tennessee)** (2) 97 0 Venderbosch (11)**Energy Layer** Efficiency (%) 5 96 ETH Zurich 6 95 Rompower **Tommasi-Bailly** 94 Red Electric Devils ★ **'**9' 93 **10) AHED** '11) FH IISB 92 (12) Univ. of Illinois @ Rated Power 91 (13) AMR 90 **š**0 100 150 200 250 300 Power Density (W/in^3)

70...300 W/in³

- 35 kHz... 500kHz... 1 MHz (up to 1MHz: 3 Teams)
- Full-Bridge or DC/|AC|Buck Converter + Unfolder
- Mostly Buck-Type Active Power Pulsation Filters (Ceramic Caps of Electrolytic Caps)
- GaN (11 Teams) / SiC (2 Teams) / Si (2 Teams)

ETH zürich

DE

Note: Numbering of

Teams is Arbitrary

Source: whiskeybehavior.info

- Performance Limits / Future Requirements
- 220...250W/in³ for Two-Level Bridge Leg + Unfolder
- 250...300W/in³ for Highly Integrated Multi-Level Approach
- Isol. Distance Requirements Difficult to Fulfill
- Fulfilling Industrial Inp. Overvoltage Requirem. would Signific. Reduce Power Density
- Low Frequency (20kHz...120kHz) SiC vs. HF (200kHz...1.2MHz) GaN
- Multi-Cell Concepts for LV Si (or GaN) vs. Two-Level SiC (or GaN)
- New Integr. Control Circuits and *i*=0 Detection for Sw. Frequency >1MHz
- Integrated Gate Drivers & Switching Cells
- High Frequency Low Loss Magnetic Materials
- High Bandwidth Low-Volume Current Sensors
- Low Loss Ceramic Capacitors Tolerating Large AC Ripple
- Passives w. Integr. Heat Management and Sensors
- 3D Packaging
- New U-I-Probes Required for Ultra-Compact Conv. R&D
- Specific Systems for Testing \rightarrow Devices Equipped with Integr. Measurement Functions
- Convergence of Sim. & Measurem. Tools \rightarrow Next Gen. Oscilloscope
- New Multi-Obj. Multi-Domain Simulation/Optim. Tools

Thank You!

Future Development 1/2

- **Commoditization / Standardization**
- Extreme Cost Pressure (!)

Key Importance of Technology Partnerships of Academia & Industry

Future Development 2/2

Extrapolation of Technology S-Curve

DE

Technology Progress – Technology Push

- WBG Semiconductor Technology
 Microelectronics
- → Higher Efficiency, Lower Complexity
 → More Computing Power

System / Smart Grid Drivers

- Metcalfe's Law
- Moving form Hub-Based Concept to Community Concept Increases Potential Network Value Exponentially (~n(n-1) or ~n log(n))

DE

ETH zürich

Technology Sensitivity Analysis Based on η-ρ-Pareto Front

Sensitivity to Technology Advancements Trade-off Analysis

Converter Performance Evaluation Based on η - ρ - σ -Pareto Surface

▶ **σ**: kW/\$

Converter Performance Evaluation Based on η - ρ - σ -Pareto Surface

'Technology Node'

DE

ETH zürich

Future Development

"Devices"	Minimize / Avoid Packages → (PCB) Embedding Integrate Driver Stage Integrate Sensors / Monitoring Multiple Use of Isolated Gate Drive Communication Channel Offer Test Devices with Integrated Measurement Function Facilitate (Double Sided) Heat Extraction
Converters	Standardized Very Low Cost Building Blocks "Application Specific" = Wide Operating Range Standardized Blocks Self-Parametrization Bidirectional Converters
Systems	AC and DC Distribution Single Converter vs. Combination of Modules / Cells Initial Costs / Life Cylce Cost Trade-off Grid 4.0
Design	Minimize Design Time / Fully Computerized Maximize Design Flexibility for Appl. Specific Solution (PCB) Maximize Design Insight for Trade-off Analysis Design for Manufacturing (Planar / PCB Based)
Literature -	More & More "White Noise"

