

J.W. Kolar, et al.

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Oct. 26, 2019

J.W. Kolar, M. Guacci, M. Antivachis, D. Bortis

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Oct. 26, 2019

ETH Zurich

21	Nobel Prizes
530	Professors
6100	T&R Staff
2	Campuses
136	Labs
35%	Int. Students
90	Nationalities
36	Languages

150th Anniv. in 2005

Departments

ARCH **Architecture** BAUG Civil, Environmental and Geomatics Eng. BIOL **Biology** BSSE **Biosystems** CHAB **Chemistry and Applied Biosciences Earth Sciences** ERDW GESS Humanities, Social and Political Sciences HEST Health Sciences, Technology **Computer Science** INFK ITET **Information Technology and Electrical Eng.** MATH **Mathematics** MATL **Materials Science** MAVT **Mechanical and Process Engineering** Management, Technology and Economy MTEC PHYS **Physics** USYS **Environmental Systems Sciences**

Ee 2019

Students ETH in total

21′000	B.Sc.+M.ScStudents
4′300	Doctoral Students

ITET – Research in E-Energy

Ee 2019 —

Balance of Fundamental and Application Oriented Research

Power Electronic Systems Laboratory

2 Sen. Researchers

ETH zürich

Competence Centre

*

Outline

► Introduction

SiC/GaN Application Challenges
 VSI with Output Filter
 Boost-Buck VSI
 Buck-Boost CSI
 Q3L & Modular Inverter

Conclusions

J. Azurza T. Guillod F. Krismer D. Menzi J. Miniböck P. Niklaus P. Papamanolis nt: D. Zhang

1/60

Acknowledgement:

3-Ф Variable Speed Drive Inverter Systems

State-of-the-Art Future Requirements

Ee 2019 —

Applications of Drive Systems

- Industry Automation / Robotics
 Material Machining / Processing Drilling, Milling, etc.
 Pumps / Fans / Compressors
- Transportation ■ etc., etc.

.... Everywhere !

• 60% of El. Energy Used in Industry Consumed by VSDs

VSD State-of-the-Art

- Mains Interface / 3-Ф PWM Inverter / Cable / Motor All Separated
 - → Large Installation Space
 / \$\$\$
 → Complicated / Expert Installation
 / \$\$\$
- Conducted EMI / Radiated EMI / Bearing Currents / Reflections on Long Motor Cables
 - \rightarrow Shielded Motor Cables / \$\$\$
 - \rightarrow Inverter Output Filters (Add. Vol.) / \$\$\$

High Performance @ High Level of Complexity / High Costs (!)

3/60

Future Requirements (1)

- "Non-Expert" Install. / Low-Cost Motors
- Wide Applicability / Wide Voltage & Speed Range \rightarrow Matching of Supply & Motor Voltage
- High Availability

• Single-Stage Energy Conversion \rightarrow No Add. Converter for Voltage Adaption

4/60

Ee 2019

 \rightarrow "Sinus-Inverter" OR Integrated Inv.

Future Requirements (2)

- **Red.** Inverter Volume / Weight
- Lower Cooling Requirement
- High-Speed Machines

 \rightarrow High Output Frequencies

→ Main "Enablers" — SiC/GaN Power Semiconductors & Adv. Inverter Topologies

ETH zürich

5/60

Enabling Technologies & Challenges

WBG Semiconductors Advanced Inverter Topologies ———

- Very Low On-State Resistance
- Very Low Switching Losses
- Small Chip Area

- \rightarrow Low (Partial Load) Conduction Losses
- → High Switching Frequencies
- \rightarrow Compact Realization

→ Challenges in Packaging / Thermal Management / Gate Drive / PCB Layout
 → Extremely High Sw. Speed (dv/dt) → Motor Insul. Stress / Reflections / Bearing Curr. / EMI

6/60

Si vs. SiC

Si-IGBT $\rightarrow dv/dt = 2...6 kV/us$ (Inverters for Var. Speed Drives / IEC 61800-3) SiC-MOSFETs $\rightarrow dv/dt = 20...60 kV/us$

 \rightarrow Extremely High dv/dt \rightarrow Motor Insul. Stress / Reflections / Bearing Curr. / EMI

7/60

Idea: F.C. Lee

PD

PD Motor Insulation Destruction (1)

- High dv/dt
 Voltage Peaks
- → Uneven Wdg. Voltage Distribution / Reflections High Voltage Peaks
 → Local Insul. Breakdown e.g. in Air-Filled Voids = Partial Discharge (PD)
 > Cond. Destruct (Insula (Insula Point States))
- → Grad. Destroys Insul. (Impinging Electrons, Ozone Chem. Attack)

Preventing PD → Ampl. of Voltage Peaks < PD Inception Voltage (PDIV)
 PDIV Parameters → Temp. / Humidity / Pressure / Insul. Thick. / Type / Wire Diameter etc.

ETH zürich

Ee 2019 -

8/60

PD Motor Insulation Destruction (2)

- dv/dt-Limits Specified by Standards
- National Electrical Manufact. Association (NEMA, Motors Manufact. in USA)
- Intern. Electrotechn. Commission (IEC)

- Ensuring the Limits $\rightarrow dv/dt$ -Filtering OR Full-Sinewave Filtering
- Relevance of dv/dt-Limits, e.g. for Single-Tooth Windings Under Discussion

ETH zürich

9/60

Ee 2019

10/60

Ee 2019

Surge Voltage Reflections

- Short Rise Time of Inverter Output Voltage Impedance Mismatch of Cable & Motor \rightarrow Reflect. @ Motor Terminals / High Insul. Stress
- Long Motor Cable $l_c \ge \frac{1}{2} t_r v$

dv/dt-Filtering OR Sinewave Filtering / Termination & Matching Networks etc. \rightarrow

Motor Bearing Currents

- Switching Frequency CM Inverter Output Voltage \rightarrow Motor Shaft Voltage
- Electrical Discharge in the Bearing ("EDM")

→ Cond. Grease / Ceram. Bearings / Shaft Grndg Brushes / dv/dt- OR Full-Sinewave Filters

11/60

SiC vs. Si Inverter EMI Spectrum

■ SiC Enables Higher dv/dt

- \rightarrow Factor 10
- SiC Enables Higher Switching Frequencies

 \rightarrow Factor 10

EMI Envelope Shifted to Higher Frequencies

Source/Idea: M. Schutten / GE

- → Higher Influence of Filter Component Parasitics and Couplings
- \rightarrow dv/dt-Filtering OR Full Sinewave Filtering, Shielded Motor Cables

Ee 2019

Inverters with LC-Output Filter

—— Full-Sinewave Filtering

— Full-Sinewave Filtering — Full-Sinewave Filtering — Full-Sinewave Filtering — Full-Sinus

Full-Sinewave Filtering @ ZVS/TCM Operation

- **ZVS of Inverter Bridge-Legs** (No Use of the Intrinsic Diodes of Si MOSFETs) High Sw. Frequency & TCM \rightarrow Low Filter Inductor Volume

- Widely Varying Switching Frequency \rightarrow Voltage Headroom and/or Multiple Bridge-Legs
- Rel. High Current Stress on the Power Transistors

ETH zürich

— Full-Sinewave Filtering — YASKAWA

► 3-Φ 650V GaN Inverter System (1)

Source: YASKAWA

Ee 2019

Transphorm 650V GaN HEMT/30V Si-MOSFET Cascode Switching Devices

• Measurement of Sw. Properties \rightarrow Turn-On/Off 10A/400V

- Factor 10 Lower On/Off Delay & Sw. Times Comp. to IGBTs
- Extremely Low Sw. Losses \rightarrow Inverter Sw. Frequency f_s = 100kHz

ETH zürich

► 3-Φ 650V GaN Inverter System (2)

- Transphorm 650V Normally-On GaN HEMT/30V Si-MOSFET Cascode 6-in-1 Power Module
- Sinewave LC Output Filter Corner Frequency f_c = 34kHz (f_s = 100kHz)
- No Freewheeling Diodes

→ Very Low Filter Volume Compared to Si-IGBT Drive Systems (f_c = 0.8kHz @ f_s ≈ 3kHz)

15/60

Source: YASKAWA

► 3-Φ 650V GaN Inverter System (3)

Source: YASKAWA

Ee 2019

- Transphorm 650V Normally-On GaN HEMT/30V Si-MOSFET Cascode 6-in-1 Power Module
- Sinewave LC Output Filter Corner Frequency f_c= 34kHz (f_s= 100kHz)
- No Freewheeling Diodes

L_F=220uH Iron Powder Core Filter Inductors, *C_F*=0.1uF

→ Very Low Filter Volume Compared to Si-IGBT Drive Systems (f_c = 0.8kHz @ f_s ≈ 3kHz) → Lower Size of DC Input Capacitor (-75% vs. IGBT) & -8dB Audible Noise @ 6krpm

► 3-Φ 650V GaN Inverter System (4)

- Gan Invertor with LC Filter to Si ICPT System (No Filter f = 15kHz)
- Comparison of GaN Inverter with LC-Filter to Si-IGBT System (No Filter, f_s=15kHz)
 Measurement of Inverter Stage & Overall Drive Losses @ 60Hz

→ 2% Higher Efficiency of GaN System Despite LC-Filter (Saving in Motor Losses) !

Source: YASKAWA

- Sigma-7F Servo Drive Integration of Inverter (TO-220 GaN) Into Motor Housing Distributed DC-Link System ("Converter" Generates DC) 0.1 0.4kW / 270...324V Nominal DC-Link Voltage

Small Size (0.4 kW @ 70 x 70x 170mm)
Massive Saving in Cabling Effort / Simplified Installation

18/60

CONTROL PANEL

MACHINE

Ee 2019

Source: YASKAWA

Integrated Servo Motor

Buck-Boost Inverters

Z-Source Inverter etc. VSI & DC/DC Front-End Phase-Modular Buck-Boost Inverter CSI & DC/DC Front-End

Ee 2019 —

"Outside-the-Box" Topologies

Z-Source Inverter → Shoot-Through States Utilized for Boost Function
 Higher Component Stress Eff. Limits Boost Operation to ≈120% U_{in}

Source: F.Z. Peng / 2003 J. Rabkowski / 2007

■ 3-Φ Back-End DC/AC Cuk-Converter

• Integration Typ. Results in Higher Comp. Stresses & Complexity / Lower Performance

Boost Converter DC-Link Voltage Adaption

- Inverter-Integr. DC/DC Boost Conv. → Higher DC-Link Voltage / Lower Motor Current
- Access to Motor Star-Point & Specific Motor Design Required
- **No Add. Components**

Source: J. Pforr et al. / 2009

Explicit Front-End DC/DC Boost Stage

 \rightarrow Analyze Coupling of the Control of Both Converter Stages \rightarrow "Synergetic Control"

"Synergetic Control" of Boost-Buck Inverter (1)

- DC/DC Boost Converter Used for 6-Pulse Shaping of DC-Link Voltage 2 (!) Inverter Phases Clamped (1/3 PWM) → Low Switching Losses / High Efficiency Conv. PWM Inverter / Clamped Boost-Stage Operation @ Low Speed

• Preferable for Low-Dynamics Drive Systems

21/60

Ee 2019

"Synergetic Control" of Boost-Buck Inverter (2)

• Seamless Transition — Clamped Boost-Stage \rightarrow Temporary \rightarrow Full Boost-Stage Operation

Ee 2019 -

"Synergetic Control" of Boost-Buck Inverter (3)

Experimental Verification

 \rightarrow Comparison to Conv. U_{DC}=const. Operation (PWM of 2/3 Phases or 3/3 Phases)

23/60

Ee 2019

"Synergetic Control" of Boost-Buck Inverter (4)

24/60

- **Experimental Verification**

Const. DC-Link Voltage & PWM of 3/3 Phases or 2/3 Phases Synergetic Control = PWM of 1/3 Phases \rightarrow Substantial Loss Saving (!)

Phase-Modular Topologies

Boost-Buck Modules Buck-Boost Modules

General Remarks

- Usually DC-Link Voltage Midpoint Considered as AC Output Ref. Point
- Open Machine Starpoint \rightarrow Introduce CM Voltage Shift \rightarrow Neg. DC-Rail as Reference

Three bidirectional dc-dc converters, with their own modulators, driven by a set of three-phase sine waves, constitute three phase voltages around the differential load. voltages generated by the new three phase power amplifier. The dc component of the line-to-ground voltages automatically disappears in line-to-line voltages which are pure ac. 25/60

Ee 2019

 \rightarrow Realization of 3- \oplus Inverter Using 3 x DC/DC Converter (Phase) Modules — S. Cuk/1982

Phase-Modular Boost-Buck / Buck-Boost Inverter

- **Wide Voltage Conv. Range** \rightarrow Battery or Fuel-Cell Supply & Adaption to Motor Voltage Continuous Output Voltage \rightarrow Explicit or Integr. LC Output Filter

 \rightarrow Preference for Low Number of Ind. Components \rightarrow Buck-Boost Concept – "Y-Inverter"

- 3-Ф Continuous Output / Low EMI !
- Buck+Boost Operation / Wide Input &/or Output Range Industrial Drive
 Standard Bridge-Legs / Building Blocks 1.2kV SiC MOSFE
- ZVS Operation / High Power Density

- 1.2kV SiC MOSFETs

Project Scope \rightarrow Hardware Demonstrator / Exp. Analysis / Comparative Evaluation

Y-Inverter (1) Operating Behavior

ETH zürich

► Y-Inverter (2)

Modulation Scheme

• Continuous Modulation \rightarrow Opt. DC-Offset of Output Phase Voltages for Low Mod. Index • Sin. Mod. w/o 3rd Harm. Inj. OR Phase Clamping (DPWM)

29/60

Ee 2019

DPWM \rightarrow Min. DC-Link Voltage & Low Sw. Losses BUT Unsymm. Curr. Stress on Transistors

■ "Democratic Control" → Seamless Transition Between Buck & Boost Operation

Y-Inverter Prototype (1)

- **Demonstrator Specifications**
- Wide DC Input Voltage Range \rightarrow 400...750V_{DC}
- Max. Input Current $\rightarrow \pm 15A$

- Max. Output Power
- **Output Frequency Range**
- Output Voltage Ripple
- 6...11 kW
- → 0...500Hz
- \rightarrow 3.2V Peak @ Output of Add. LC-Filter

Y-Inverter Prototype (2)

- DC Voltage Range 400...750V_{pc}
- Max. Input Current ± 15A
- Output Voltage
Output Frequency0...230Vrms
0...500Hz(Phase)
- Sw. Frequency 100kHz
- $3x \operatorname{SiC}(75 \mathrm{m}\Omega)/1200V$ per Switch
- IMS Carrying Buck/Boost-Stage Transistors & Comm. Caps & 2nd Filter Ind.

Dimensions \rightarrow 160 x 110 x 42 mm³ (15kW/dm³, 245W/in³)

Measurement Results (1)

- Stationary Operation
- $U_{DC} = 400V$ $U_{AC} = 400V_{rms}$ (Motor Line-to-Line Voltage) $f_0 = 50Hz$
- 100kHz / DPWM $f_{\rm s} =$

→ Line-to-Line Output Voltage Ripple < 3.2V

- Transient Operation
- *U_{DC}*= 400V
- U_{AC}^{bC} = 400V_{rms} (Motor Line-to-Line Voltage)
- $f_0 = 50 \text{Hz}$ $f_s = 100 \text{kHz} / \text{DPWM}$
- $P = 6.5 \mathrm{kW}$

Dynamic Behavior V-f Control and Load-Step

34/60

100V/div 100V/div

6A/div

6A/div

EMI-Limits (VSD Product Standard)

IEC 61800-3

- \rightarrow Product Standard for Variable-Speed Motor Drives
- **EMI Emission Limits** \rightarrow Grid Interface (GI) and Power Interface (PI)
- Application

EMI-Filter Design for Unshielded Cables > 2m and Resid. Applications (Cond. & Rad.)

Conducted EMI-Filter

• Separate Cond. DM & CM EMI-Filter on DC-Side & DC-Minus Ref. EMI-Filter on AC-Side

→ Low Add. EMI Filter Volume — 74cm³ for Each Filter (incl. Toroid. Rad. EMI Filter) → Total Power Density Reduces — $15kW/dm^3$ (740cm³) → $12kW/dm^3$ (890cm³)

Experimental Results - Conducted EMI

• Measurements of the Cond. EMI Noise on the AC-Side (QP, with 50Hz AC-LISN)

→ Small 80uH CM-Ind. Added on AC-Side - (3cm³ of Add. Volume = 0.5% of Converter Vol.)
 → Conducted EMI with Unshielded Motor Cable Fulfilled

37/60

Radiated EMI-Filter

- Single-Stage HF CM-Filter on DC-Side and AC-Side
- Plug-On CM-Cores (NiZn-Ferrites) \rightarrow Low Parasitics & Good HF-Att. up to 1GHz

→ Additional EMI Filter Volume Already Considered with Conducted EMI Filter → Total Power Density Slightly Reduces — $15kW/dm^3 \rightarrow 12kW/dm^3$

ETH zürich

Experimental Results - Radiated EMI

- Measurement Setup Alternative Measurement Principle
- Y-Inverter Placed in Metallic Enclosure \rightarrow Emulate Housing, but UN-Shielded Cables (!)
 - \rightarrow According IEC 61800-3
 - \rightarrow Conducted CM-Current Instead of Radiation

 \rightarrow Already Noticeable Noise Floor

 \rightarrow HF-Emissions Well Below Equivalent EMI-Limit \rightarrow Next Step: Verification Using Antenna

40/60

Ee 2019

• Efficiency Measurements • Dependency on Input Voltage & Output Power Level $U_{DC}^{=} 400V / 600V$ $U_{AC}^{=} 230V_{rms} (Motor Phase-Voltage)$ $f_{S}^{=} 100kHz$ $U_{DC}^{=} \frac{U_{in}}{U_{in}} = 400V - 00V - 0$

→ Multi-Level Bridge-Leg Structure for Increase of Power Density @ Same Efficiency

DC/DC Buck-Stage & Current Source Inverter

Monolithic Bidir. GaN Switches Synergetic Control

Current Source Inverter (CSI) Topologies

- Phase Modular Concept → Y-Inverter (Buck-Stage / Current Link / Boost-Stage)
 3-Φ Integrated Concept → Buck-Stage & Current DC-Link Inverter

→ Low Number of Ind. Components & Utilization of Bidir. GaN Semicond. Technology

► 3-Φ Integrated Buck-Boost CSI (1)

- **Basic Topology Proposed in 1984 (Ph.D. Thesis of K.D.T. Ngo/CPES)** Bidir./Bipolar Switches \rightarrow Positive DC-Side Voltage for Both Directions of Power Flow

42/60

Ee 2019

 \rightarrow Monol. GaN Switches \rightarrow Factor 4 Improvement in Chip Area Comp. to Discrete Realiz. \rightarrow Also Beneficial for Matrix Converter Topologies

► 3-Φ Integrated Buck-Boost CSI (2)

- Monolithic Bidir. Bipolar GaN Switches Featuring 2 Gates / Full Controllability
- Buck-Stage for Impressing Const. DC Current / PWM of CSI for Output Voltage Control

43/60

Ee 2019

• Conventional Control of Inverter Stage \rightarrow Switching of All 3 Phase Legs (3/3)

► 3-Φ Integrated Buck-Boost CSI (3)

- Monolithic Bidir. Bipolar GaN Switches Featuring 2 Gates / Full Controllability
- **Buck-Stage for Impressing Const. DC Current / PWM of CSI for Output Voltage Control**

• Conventional Control of Inverter Stage \rightarrow Rel. High CSI-Stage Sw. Losses

► 3-Φ Integrated Buck-Boost CSI (4)

- "Synergetic" Control of Buck-Stage & CSI Stage 6-Pulse-Shaping of DC Current by Buck-Stage \rightarrow Allows Clamping of a CSI-Phase

Switching of Only 2 of 3 Phase Legs \rightarrow Significant Reduction of Sw. Losses

► 3-Φ Integrated Buck-Boost CSI (5)

- "Synergetic" Control of Buck-Stage & CSI Stage 6-Pulse-Shaping of DC Current by Buck-Stage \rightarrow Allows Clamping of a CSI-Phase

46/60

Ee 2019

Switching of Only 2 of 3 Phase Legs \rightarrow Significant Red. of Sw. Losses (\approx -86% for R-Load)

► 3-Φ Integrated Buck-Boost CSI (6)

- "Synergetic" Control of Buck-Stage & CSI Stage 6-Pulse-Shaping of DC Current by Buck-Stage \rightarrow Allows Clamping of a CSI-Phase

Operation for 30° Phase Shift of AC-Side Voltage & Current

47/60

\blacktriangleright 3- \oplus Integrated Buck-Boost CSI (7)

ETH zürich

Future Research

- Advanced DC/AC Topologies incl. CM-Filtering
 Extension of 2/3-PWM to Bipolar DC-Link Voltage 3-Φ AC/AC Converter
 Multi-Objective Design & Comparative Evaluation

• **Partial Use of "Normally-On" Switches** for Freewheeling in Case of Auxiliary Power Loss

49/60

Further Concepts

Quasi-2-Level FC Inverter — Power Module with Integrated Filter —

Ee 2019 —

Quasi-2L/3L —— Flying Capacitor Inverter

Ee 2019 —

Quasi-2L & Quasi-3L Inverters (1)

- **Operation of N-Level Topology in 2-Level or 3-Level Mode**
- Intermediate Voltage Levels Only Used During Sw. Transients
- Applicability to All Types of Multi-Level Converters

- Reduced Average $dv/dt \rightarrow$ Lower EMI / Lower Reflection Overvoltages
- Clear Partitioning of Overall Blocking Voltage & Small Flying Capacitors
 Low Voltage/Low R_{DS(on)}/Low \$ MOSFETs → High Efficiency / No Heatsinks / SMD Packages

ETHzürich

50/60

Quasi-2L & Quasi-3L Inverters (2)

- Operation of 5L Bridge-Leg Topology in Quasi-3L Mode
- Intermediate Voltage Levels Only Used During Sw. Transients
- Applicability to All Types of Multi-Level Converters

- Reduced Average $dv/dt \rightarrow$ Lower EMI / Refection Overvoltages
- Clear Partitioning of Overall Blocking Voltage & Small Flying Capacitors
- Low Voltage/ $R_{DS(on)}$ /\$ MOSFETs \rightarrow High Efficiency / No Heatsinks / SMD Packages

ETH zürich

Quasi-2L & Quasi-3L Inverters (3)

- Operation of 5L Bridge-Leg Topology in Quasi-3L Mode
- Intermediate Voltage Levels Only Used During Sw. Transients
- Applicability to All Types of Multi-Level Converters

- Reduced Average $dv/dt \rightarrow$ Lower EMI / Refection Overvoltages
- Clear Partitioning of Overall Blocking Voltage & Small Flying Capacitors
- Low Voltage/ $R_{DS(on)}$ /\$ MOSFETs \rightarrow High Efficiency / No Heatsinks / SMD Packages

52/60

Quasi-2L & Quasi-3L Inverters (4)

- Operation of 5L Bridge-Leg Topology in Quasi-3L Mode
- Intermediate Voltage Levels Only Used During Sw. Transients
- Applicability to All Types of Multi-Level Converters

Operation @ 3.2kW

- Conv. Output Voltage
- Sw. Stage Output Voltage
- Flying Čap. (FC) Voltage
- Q-FC Voltage (Úncntrl.)

Ee 2019

- Output Current
 Conv. Side Current
- Reduced Average $dv/dt \rightarrow$ Lower EMI / Refection Overvoltages
- Clear Partitioning of Overall Blocking Voltage & Small Flying Capacitors
- Low Voltage/ $R_{DS(on)}$ /\$ MOSFETs \rightarrow High Efficiency / No Heatsinks / SMD Packages

ETH zürich

650V GaN E-HEMT Technology f_{S,eff}= 4.8MHz f_{out} = 100kHz

Ee 2019 —

Integrated Filter GaN Half-Bridge Module (1)

- Minimization of Filter Volume by Series & Parallel Interleaving & Extreme Sw. Frequency
 Handling of DC Output Paguiros Elving Canacitor Approach for Series Interleaving
- Handling of DC Output Requires Flying Capacitor Approach for Series Interleaving

 \rightarrow Target: Best Combination of Multiple Levels (M) & Parallel Branches (N)

Power Electronic Systems

Laboratory

225

Integrated Filter GaN Half-Bridge Module (2)

- Analysis of Best Combination of Levels (M) & Parallel Branches (N)
- Application of GaN Semiconductor Technology
- U_{DC} =800V, P=10kW, $\Delta u_{out,pp}$ =1%, $f_{S,eff}$ =4.8MHz

 \rightarrow L_{filt}= 1.26uH Fixed in Order to Limit Branch Current Ripple for High N \rightarrow Selection of M=3 / N=3 Considering Efficiency / Filter Volume Trade-Off

55/60

@ C_{filt} = 90nF =const.
Integrated Filter GaN Half-Bridge Module (3)

- Selection of M=3 / N=3 Considering Efficiency / Filter Volume Trade-Off
- N·L_{filt}=3.3uH of Branch Inductance / C_{filt} = 90nF
- 650V GaN E-HEMT Technology
- $f_{S,eff} = 4.8MHz$

• Design for Max. Output Frequency of f_{out} = 100kHz (!) @ Full-Scale Voltage Swing

Ee 2019 -

Integrated Filter GaN Half-Bridge Module (4)

- Demonstrator System
- 650V GaN Power Semiconductors
 Volume of ≈180cm³ (incl. Control etc.)
 H₂O Cooling Through Baseplate

• Operation @ f_{out} =100kHz ($f_{S,eff}$ = 4.8MHz)

Ee 2019

Motor-Integrated Modular Inverter

Ee 2019

Power Electronic Systems Laboratory

Motor-Integrated Modular Inverter

→ Evaluate Machine Concept (PMSM vs. SRM etc.) / Wdg Topologies / Filter Requ. / etc.

Motor-Integrated Inverter Demonstrator

- Rated Power9kW @ 3700rpmDC-Link Voltage650V...720V Rated Power
- $3-\Phi$ Power Cells 5+1
- Outer Diameter 220mm

- Axial Stator Mount
- 200V GaN e-FETs
- *Low-Capacitance DC-Links*
- 45mm x 58mm / Cell

Main Challenge — Thermal Coupling/Decoupling of Motor & Inverter \rightarrow

Conclusions

- Future Need for "SWISS Knife"-Type Systems
- Wide Input / Output Voltage Range
- Continuous / Sinusoidal Output Voltage
- Electromagnetically "Quiet" No Shielded Cables
- On-Line Monitoring / Industry 4.0
- "Plug & Play" / Non-Expert Installation
- SMART Motors
- Enabling Technologies
- SiC / GaN

ETH zürich

- Adv. (Multi-Level) Topologies incl. PFC Rectifier
- "Synergetic" Control
- Monolithic Bidirectional GaN
- Intelligent Power Modules
- Integration of Switch / Gate Drive / Sensing / Monitoring
- Adv. Modeling / Simulation / Optimization
- System Level → Integration of Storage, Distributed DC Bus Systems, etc.

Source: UK Outdoor Store

60/60

Thank you!

