

Solid-State-Transformer (SST) Applications -A Glimpse Into the Future

Johann W. Kolar

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Nov. 19, 2019

ETH Zurich

21	Nobel Prizes
530	Professors
6100	T&R Staff
2	Campuses
136	Labs
35%	Int. Students
90	Nationalities
36	Languages

150th Anniv. in 2005

Departments

ARCH Architecture BAUG **Civil, Environmental and Geomatics Eng.** BIOL **Biology** BSSE **Biosystems** CHAB **Chemistry and Applied Biosciences Earth Sciences** ERDW GESS Humanities, Social and Political Sciences HEST Health Sciences, Technology **Computer Science** INFK ITET Information Technology and Electrical Eng. MATH **Mathematics** MATL **Materials Science** MAVT **Mechanical and Process Engineering** Management, Technology and Economy MTEC PHYS **Physics Environmental Systems Sciences** USYS

Students ETH in total

21′000	B.Sc.+M.ScStudents
4′300	Doctoral Students

ITET – Research in E-Energy

Power Electronic Systems Laboratory

22 Ph.D. Students 1 PostDoc 2 Sen. Researchers

ETH zürich

Outline

SST Origins

- Traction
- Smart Grids
- Key Characteristics
- *MEGATRENDS* \rightarrow Future SST Application Areas
 - Datacenter
 - Smart Cities / Buildings
 High Power EV Charging

 - More Electric/Hybrid Aircraft

 - More Electric/Hybrid Ships
 Renewable Energy Wind / Solar
 - Deep Sea Exploration etc.
- Key Topologies
 Industry / ETH Demonstrators
 Conclusions

P. Czvz T. Guillod J. Huber G. Ortiz Acknowledgement: **D. Rothmund**

SST Origins

Next Generation Traction Vehicles

Classical Locomotives

- Catenary Voltage 15kV or 25kV
- FrequencyPower Level

ETH zürich

 $16^{2}/_{3}$ Hz or 50Hz 1...10MW typ.

Efficiency Current Density Power Density

90...95% (due to Restr. Vol., 99% typ. for Distr. Transf.) 6 A/mm² (2A/mm² typ. Distribution Transformer) 2...4 kg/kVA (0.5...0.25 kVA/kg)

2/65

Passive Transformer

• Magnetic Core Cross Section

$$A_{Core} = \frac{1}{\sqrt{2}\pi} \frac{U_1}{\hat{B}_{max}} \frac{1}{f} \frac{1}{N_1}$$
$$A_{Wdg} = \frac{2I_1}{k_W J_{rms}} N_1$$

• Winding Window

• Construction Volume

$$A_{Core}A_{Wdg} = \frac{\sqrt{2}}{\pi} \frac{P_t}{k_W J_{rms} \hat{B}_{max} f} \tilde{L}^4$$

 P_{t} Rated Power k_{W} Window Utilization Factor B_{max} ... Flux Density Amplitude J_{rms} ... Winding Current Density f Frequency

■ Low Frequency → Large Weight / Volume
 ■ Trade-off → Volume vs. Efficiency

Next Generation Locomotives (1)

- * Distributed Propulsion System → Volume Reduction
 * Energy Efficient Rail Vehicles → Loss Reduction
 * Red. of Mech. Stress on Track → Mass Reduction Trends

(Requires Higher Volume)

Source: ABB

Conventional AC-DC conversion with a line frequency transformer (LFT).

AC-DC conversion with medium frequency transformer (MFT).

- **Replace LF Transformer with** *MF Transformer* & *Power Electronics Interface* \rightarrow *SST*
- Medium-Frequency Allows Reduction of Volume & Losses

\rightarrow Next Generation Locomotives (2)

Loss Distribution of Conventional & Next Generation Locomotives

• MF Provides Degree of Freedom \rightarrow Reduction of Volume & Losses (!)

Advanced (High Power Quality) Grid Concept

- Heinemann / ABB (2001)

- MV AC Distribution with DC Subsystems (LV and MV) and Distributed AC & DC Sources /Loads
 MF AC/AC Conv. with DC Link Coupled to Energy Storage provide High Power Qual. for Spec. Customers

6/65

Future Ren. Electric Energy Delivery & Management (FREEDM) Syst.

- Huang et al. (2008)
- SST as Enabling Technology for the "Energy Internet"
- Full Control of the Power Flow
- Integr. of DER (Distr. Energy Res.)
 Integr. of DES (Distr. E-Storage) + Intellig. Loads
- Protects Power Syst. From Load Disturbances
- Protects Load from Power Syst. Disturbances
- Enables Distrib. Intellig. through COMM
- Ensure Stability & Opt. Operation
- etc.
- etc.

ETH zürich

IFM = Intellig. Fault Management

• Bidirectional Flow of Power & Information / High Bandw. Comm. \rightarrow Distrib. / Local Autonomous Cntrl

≻

Source: www.yacht-chartercroatia.com

> $3-\Phi$ AC vs. DC Power Systems

- DC Voltage Ensures Max. Utiliz. of Isol. Voltage
- \rightarrow Highest Voltage RMS Value / Lowest Current (!) **Reduction of Conductor Cross Section** Quadratic Dependency of Losses on Voltage Level \rightarrow

- **DC Voltage Level Transformation Requires Power Electronics Interfaces**
- DC Fault Current Clearing is Challenging (Missing Regular Current Zero Crossing)

8/65

► AC vs. DC Power Transmission

■ AC Cable - Thermal Limit Due to Cap. Current @ L = 0

Low-Frequency AC (LFAC) as Possible (Purely Passive) Solution for Medium Transmission Distances

SST Key Characteristics

■ Interface to Medium-Voltage / Medium-Frequency Isolation / AC or DC Input and/or Output

AC Load

Remark

Trade-Off - Controllability vs. Efficiency

- Lower Efficiency of SST Compared to "Grid-Type" Passive Transformer
- Medium Freq. \rightarrow Higher Transf. Efficiency only Partly Compensates Converter Stage Losses

ETH zürich

SST Development Cycles

Development Cycles Reaching Over Decades – Matched to "Product" Life Cycle

Global Megatrends

Digitalization Urbanization Sustainable Mobility Renewable Energy Etc.

Global Megatrends

Digitalization Urbanization Sustainable Mobility Renewable Energy Etc.

- Ranging from Medium Voltage to Power-Supplies-on-Chip
 Short Power Supply Innovation Cycles
 Modularity / Scalability

- Higher Availability
- Higher Efficiency
 Higher Power Density
- Lower Costs

Source: REUTERS/Sigtryggur Ari

up to 450 MW 99.9999%/<30s/a \$1.0 Mio./Shutdown

Since 2006 Running Costs > Initial Costs

Server-Farms

60 Watts

→ Future *Modular* SST-Based Power Distribution

- **5...7% Reduction in Losses & Smaller Footprint**
- Improves Reliability & Power Quality
- Conventional

ETH zürich

- Direct 3- Φ 6.6kV AC \rightarrow 48V DC Conversion / Unidirectional SST

• $MV \rightarrow 48V \rightarrow 1.2V$ - Only 2 Conversion Stages from MV to CPU-Level (!)

14/65

Global Megatrends

Urbanization

- 60% of World Population Exp. to Live in Urban Cities by 2025
- **30 MEGA Cities Globally by 2023**

Selected Current & Future MEGA Cities $2015 \rightarrow 2030$

\rightarrow Smart Cities/Grids/Buildings (1)

- Masdar = "Source"
- Fully Sustainable Energy Generation
 * Zero CO₂
 * Zero Waste

ETH zürich

- EV Transport / IPT Charging
 to be finished 2025

\rightarrow Smart Cities/Grids/Buildings (2)

- Masdar = "Source"
- Fully Sustainable Energy Generation
 * Zero CO₂
 * Zero Waste

ETH zürich

- EV Transport / IPT Charging
 to be finished 2025

\rightarrow DC Microgrids

- **Local DC Microgrid Integrating Loads/Ren. Sources/Storage** No Low-Voltage AC/DC Conversion \rightarrow Higher Efficiency & Lower Realization Effort

- Future SST-Based Concept

Conventional

Global Megatrends

Digitalization Urbanization Sustainable Mobility Renewable Energy Etc.


```
Sustainable Mobility
```

- EU Mandatory 2020 CO₂ Emission Targets for New Cars
- 147g CO₂/km for Light-Commercial Vehicles
 95g CO₂/km for Passenger Cars
 100% Compliance in 2021

19/65

→ Ultra-Fast / High-Power EV Charging

- Medium Voltage Connected Modular Charging Systems
- Very Wide Output Voltage Range (200...800V)

Source: Porsche Mission-E Project

- E.g., Porsche *FlexBox* incl. Cooling
- Local Battery Buffer (140kWh)
- − 320kW \rightarrow 400km Range in 20min

→ Bidirectional SST-Based MV Interface

Conventional

ETH zürich

Future SST-Based Concept

- On-Site Power / Energy Buffer → "Energy-Hub"
 Power / Energy Management → Peak Load Shaving & Grid Support / Stabilization

Sustainable Air Transportation

- Massive Steady Increase of Global Air Traffic Over the Next Decades
- Need for 70[°]000 New Airliners over the Next 20 Years (Boeing & Airbus) Stringent *Flightpath 2050 Goals* of ACARE \rightarrow Reduction of CO₂/NO_x/Noise Emissions

GLOBAL AIR TRAFFIC (TRILLION REVENUE PASSENGER KILOMETRES)

Traffic is expected to double in the next 15 years 16 2014-2024 ICAO total traffic Airbus forecast 2015 -15 14 2024-2034 13 12 2014-2034 0 2009 1974 1979 1984 1989 1994 2004 2014 2019 2024 2029 2034 1999

Source: International Civil Aviation Organization (ICAO)/Airbus 2015

ETH zürich

 \rightarrow

Source:

-> Future Distributed Propulsion Aircraft

Cut Emissions Until 2050

- CO₂ by 75%,
- NO_x by 90%, Noise Level by 65%

- Wing-Tip Mounted Eff. Optimized Gas Turbines & Distributed E-Fans ("E-Thrust")
 MV or Superconducting Power Distribution Integr. 1000Wh/kg Batteries (EADS-Concept)

ETH zürich

\rightarrow Future Aircraft Electric Power System

MV or Superconducting Power Distribution Integr. 1000Wh/kg Batteries (EADS-Concept)

- Generators 2 x 40.2MW (NASA) E-Fans 14 x 5.7 MW (1.3m Diameter) ٠

Sustainable Maritime Transportation

- 80% of All Globally Traded Goods Transported by Ships
- IMO → Ship Energy Eff. Management Plan (SEEMP) & Energy Eff. Design Index (EEDI)
 Crude Oil → New Fuel Types (LNG)
 Fully-Electric Port Infrastructure

Worldwide Seaborne **Trade in Billions of Cargo Ton-Miles**

ETH zürich

Power Electronic Systems Laboratory

ETH zürich

Hybrid Diesel-Electric Propulsion

- No Mech. Coupling of Propulsion & Prime Movers (DGs) \rightarrow Eff. Optim. Load Distrib. to the DGs
- Energy Storage (Batt., Fuel Cell, etc.)
- **Peak Shaving** – Opt. Gen. Scheduling - High Dyn. Performance 0 0 DG 2DG 4DG 1 DG 3 G G G Medium-Voltage AC / 60 Hz AC / $60 \, \text{Hz}$ Medium-Voltage Power Distribution Power Distribution AC AC AC, AC AC, AC. \mathbf{M} \mathbf{M} /DC /DC /DC AC 2 AC 1/DC /DC /DC ∢-∥⁺-Low-Voltage Low-Voltage DC DC DC, DC. DC, DC/ AC /DC/DC AC AC AC - -+ -Μ ES 1ES 2PM 2PM 1
- Conv. AC Power Distrib. Network → Disadvantage of Const. Prime Mover / Generator Speed

\rightarrow Shipboard DC Power Distribution

- Future DC/AC-SST Interface to Low-Voltage AC & DC Grid Future DC/DC-SST Interface to Energy Storage (ES)

1kV/< 20MW or 1...35kV/20...100MW DC Distribution (Radial or Ring, Central. or Distrib.)

\rightarrow Future Combat Ships (1)

MV Cellular DC Power Distribution on Future Combat Ships etc.

Source: General Dynamics

- "Energy Magazine" as Extension of Electric Power System / Individual Load Power Conditioning
 Bidirectional Power Flow for Advanced Weapon Load Demand
 Extreme Energy and Power Density Requirements

\rightarrow Future Combat Ships (2)

MV Cellular DC Power Distribution on Future Combat Ships etc.

- "Energy Magazine" as Extension of Electric Power System / Individual Load Power Conditioning
- Bidirectional Power Flow for Advanced Weapon Load Demand
- Extreme Energy and Power Density Requirements

ETH zürich

Global Megatrends

Digitalization Urbanization Sustainable Mobility Renewable Energy Etc.

Wind Energy

Power prop. $D^2 \rightarrow$ "Bigger is Better" / Lower Relative Costs 50kW (D = 15m) in 1980 \rightarrow Up to 20MW (D = 250m) in Future

\rightarrow Wind Turbine Electrical System

- Current 690V Electrical System → Significant Cabling Weight/Costs & Space Requirement Future Local Medium-Frequency Conv. to Medium-Voltage AC or DC

Off-Shore Collector-Grid Concepts \rightarrow

Conventional AC Collector-Grid

- DC/DC-SST Interface Wind Turbine DC Link to MVDC Collector Grid \rightarrow Lower Losses (1%) & Volume \rightarrow Lower Losses (1%) & Volume
- DC/DC-SST Interface MVDC Grid to HVDC Transmission

Utility-Scale Solar Power Plants

Medium-Voltage Power Collection and Transmission

Source: REUTERS/Stringer

 Globally Installed PV Capacity Forecasted to 2.7 Terawatt by 2030 (IEA)

ETH zürich

\rightarrow Future DC Collector Grid

- DC/DC SST for MPPT & Direct Interfacing of PV Strings to MV Collector Grid
- 1.5% Efficiency Gain Compared to Conv. AC Technology

Global Megatrends

Digitalization Urbanization Sustainable Mobility Renewable Energy Etc.

Future Deep Sea Mining

- "Subsea Factories" / Subsea Power Grid → Long-Distance MV Power Supply from Shore Subsea Mining Machines / ROVs / Pumps / Compressors etc.

Source: SMD - Specialist Machine Developments

Demand for Highly Compact / Efficient / Reliable Systems

36/65

ightarrow Future Power Supply of Subsea Systems

ETH zürich

\rightarrow Cutting Emissions & Noise in Airports / Harbours

■ Ground Power Supply of Aircraft → APU Turned Off

ETH zürich

■ MV-Level Shore-Side Power to Docked Ships ("Cold-Ironing") → Diesel Aux. Engines Turned Off

38/65

SST Concept Implementation

Classification of SST Topologies (1)

Number of Levels Series/Parallel Cells Degree of Power Conversion Partitioning

Degree of Phase Modularity

3-Dimensional Topology Selection Space

Classification of SST Topologies (2)

Number of Levels Series/Parallel Cells

ETH zürich

- Very (!) Large Number of Possible Topologies
- Partitioning of Power Conversion
- Splitting of 3ph. System into Individual Phases
- Splitting of Medium Operating Voltage into Lower Partial Voltages

 Multi-Level/Cell Approaches
- \rightarrow Matrix & DC-Link Topologies
- \rightarrow Phase Modularity

40/65

Combining the Basic Concepts I

— Single-Phase AC-DC Conversion / ——— Traction Applications

Cascaded H-Bridges w. Isolated Back End

- Multi-Cell Concept (AC/DC Front End & Soft-Switching Resonant DC//DC Converter)
- Input Series / Output Parallel Connection Self Symmetrizing (!) Highly Modular / Scalable
- Allows for Redundancy
- BOMBARDIER ALSTOM etc. High Power Demonstrators: **ABB**

[V] [A] $\frac{u_{line}}{10}$ UI. 1250 100 0 0 -1250 -100 0 0.05 0.1 0.15 0.2 Time [s] [V] [A] u_{S6_ce} 3000 200 Tr H 2000 1000 -200 0.2 0.6 0 0.4 0.8 1.0 Time [ms]

Operating Frequency

DCX — "DC Transformer"

- $f_s \approx \text{Resonant Frequency} \Rightarrow$ "Unity Gain" $(U_2/U_1 = N_2/N_1)$ Fixed Voltage Transfer Ratio Independent of Transferred Power (!) Power Flow Level & Direction Self-Adjusting No Controllability / No Need for Control

Diodes \rightarrow IGBTs for Bidirectional

Ires: HV & LV side [A]

 $U_{\rm LV}$

 $R_{\rm L}$

Power Flow

 N_{2}

i₂

 $R_{\rm s} C L$

Ν

i₁

ZCS of All Devices

 $U_{\rm MV}$

• Current Shaping & Isolation \rightarrow Isolation & Current Shaping

Isolated DC/DC Back End

■ Isolated AC/ AC Front End

- Typical Multi-Cell SST Topology
- Two-Stage Multi-Cell Concept
- Direct Input Current Control
- Indirect Output Voltage Control
- High Complexity at MV Side

ETH zürich

- Swiss SST (S3T)
- Two-Stage Multi-Cell Concept
 - Indirect Input Current Control
- Direct Output Voltage Control
- Low Complexity on MV Side

43/65

Modular Multilevel Converter

- **Single Transformer Isolation**

- Highly Modular / Scalable Allows for Redundancy Challenge of Balancing the Cell DC Voltages

SIEMENS - Marquardt/Glinka (2003)

MEGALink @ ETH Zurich

- 2-Level Inverter on LV Side
- HC-DCM-SRC DC//DC Conversion
 Cascaded H-Bridge MV Structure ISOP Topology

Non-Cascaded Structure (SiC)

- 13.8kV \rightarrow 480V
- Scaled Prototype
 15kV SiC-IGBTs, 1200V SiC MOSFETs

Redundancy Only for Series-Connection of Power Semiconductors (!)

SST Demonstrator Systems

Future Locomotives Smart Grid Applications

Power Electronic Systems Laboratory

ETH zürich

1ph. AC/DC Power Electronic Transformer - PET

► 1.2 MVA 1ph. AC/DC Power Electronic Transformer (1)

Cascaded H-Bridges - 9 Cells
 Resonant LLC DC/DC Converter Stages

Same Overall Volume as Conventional System
 Future Development Targets Half Volume

► 1.2 MVA 1ph. AC/DC Power Electronic Transformer (2)

- Cascaded H-Bridges 9 Cells
 Resonant LLC DC/DC Converter Stages

Same Overall Volume as Conventional System Future Development Targets Half Volume

SiC-Enabled Solid-State Power Substation (1)

- Das et al. (2011)

ETH zürich

- Lipo (2010)
 Weiss (1985 for Traction Appl.)
- Fully Phase Modular System
- Indirect Matrix Converter Modules $(f_1 = f_2)$ MV Δ -Connection (13.8kV_{I-I}, 4 Modules in Series) LV Y-Connection (265V, Modules in Parallel)

- SiC Enabled 20kHz/1MVA "Solid State Power Substation"
 97% Efficiency @ Full Load / 1/3rd Weight / 50% Volume Reduction (Comp. to 60Hz)

50/65

SiC-Enabled Solid-State Power Substation (2)

- Das et al. (2011)
- Fully Phase Modular System

- Indirect Matrix Converter Modules $(f_1 = f_2)$ MV Δ -Connection (13.8kV_{I-I}, 4 Modules in Series) LV Y-Connection (265V, Modules in Parallel)

- SiC Enabled 20kHz/1MVA "Solid State Power Substation"
 97% Efficiency @ Full Load / 1/3rd Weight / 50% Volume Reduction (Comp. to 60Hz)

51/65

25kW SwiSS-Transformer @ ETH Zurich

- Bidirectional 1- Φ 3.8 kV_{rms} AC \rightarrow 400V DC Power Conversion Based on 10kV SiC MOSFETs
- Full Soft-Switching

35...75kHz iTCM Input Stage

ETH zürich

48kHz DC-Transformer Output Stage

▶ 3.8kV \rightarrow 7kV ZVS AC/DC Stage

- Full-Bridge iTCM integrated Triang. Current Mode Operation Enables ZVS
- ZVS Requires Change of Sw. Current Direction in Each Sw. Period
- Open-Loop Variation of Sw. Frequency for Const. ZVS Current (35...75kHz)
 Separate Optim. of ZVS and Input Inductor Possible
- No Large Ripple Input Current

Full-Load Measurement (25kW @ 3.8kVrms AC, 7kV DC) - ZVS Over Full AC Cycle (!)

▶ $7kV \rightarrow 400V DC/DC Stage (1)$

- MV-Side Half-Bridge
- 48kHz Sw. Frequency, ZVS
- Cooling of Power Semicond. by Floating Heatsinks (Not Shown)
- Creepage Distances Ensured by PCB Slots

Half-Bridge for Cutting Voltage in Half / Lower Switch Count

▶ $7kV \rightarrow 400V DC/DC Stage$ (2)

- **MF-Transformer Measurement**
- Fully Tested @ 25kW / 7 kV
 Calorimetric Loss Measurement
- 99.64% Efficiency

ETH zürich

Transformer Prototype / Loss Distribution / Efficiency

Overall Performance

- **Full Soft-Switching**
- 98.1% Overall Efficiency @ 25kW 1.8 kW/dm³ (30W/in³)

Red. of Losses & Volume by Factor of >2 Comp. to Alternative Approaches (!) Significantly Simpler Compared to Multi-Module SST Approach

Remark 1- Φ 2.4 kV_{rms} AC \rightarrow 54V DC F \ominus Fuji Electric

- Published @ IEEE APEC 2017
- N=5 Series-Connected Cells @ MV-Side / Cost Optimum
- **Input Stage** Module \rightarrow Boost PFC Half Contr. Thyr. Rect. / 1.2kV IGBTs & SiC Diodes
- Output Stage Module → 3-Level DC/DC Conv. 600V SJ & 100V MOSFETs

Power Density of 0.4 kW/dm³ (6.6W/in³)
 96% Overall Efficiency @ 25kW

► 40kV SiC Super-Switch @ ETH Zurich

- **Cascaded 10kV SiC MOSFETs**
- Quasi-X-Level (Staggered) Switching
 Intellig. Power Module Two-Level Bridge-Leg Appearance

• Integrated Gate Drive / Voltage Balancing / Protection / Isol. Cooling Surface etc.

Rated Power

ETH zürich

■ DC/DC Conversion 7kV / 7kV

► SST — Air-Core vs. Magnetic-Core XFRM (1)

Magnetic-Core 10 kV SiC 10 kV SiC DC+⊶ ⊸ DC+ Transformer 3.5 kV **≡** \implies 3.5 kV ■ 3.5 kV 3.5 kV = 1:1DC-. ⊸ DC-Air-Core 10 kV SiC 10 kV SiC DC+ •-- DC+ Transformer \leftarrow C_{r1} $L_{\sigma1}$ $L_{\sigma 2} C_{r2}$ 3.5 kV **≡** 本 = 3.5 kV 1:1 3.5 kV 🚔 늘 3.5 kV - DC-DC-

166kW

Clarify Weight / Efficiency Trade-Off

► SST — Air-Core vs. Magnetic-Core XFRM (2)

• η - γ - ρ -Pareto Fronts of Transformers & Converters

► SST — Air-Core vs. Magnetic-Core XFRM (3)

Air Core SST → 98.9% / 12.8kg (77kHz)
 Mag. Core SST → 99.2% / 27.2kg (40kHz)

🛧 13 kW/kg

Weight / Efficiency Trade-Off

ETH zürich

Conclusions

SST Limitations / Concepts Research Areas

The Solid-State Transformer Hype

SST Applications \rightarrow The Road Ahead

- NOT (!) Weight / Space Limited
- Smart Grid, Stationary Applications

- AC/AC
- **Efficiency Challenge**
- More Eff. Voltage Control by * Tap Changers
- * Series Regulators (Partial Power) Not Compatible w. Existing Infrastr.
- Cost / Robustness / Reliability

- AC/DC
- Efficiency Challenge more Balanced
- "Local" Applic. (Datacenters, DC Distr.)
- Cost / Robustness / Reliability

ETH zürich

- DC/DC
- No Other Option (!)
- MV DC Collection Grids (Wind, PV)
- Sw. Frequ. as DOF of Design

- Weight / Space Limited
- Traction Applic. etc.

- DC/DC AC/DC
- AC/AC
- Sw. Frequ. as DOF of Design
- Low Weight/Volume @ High Eff.
- Local Applic. (Load/Source Integr.)

Remark *"Hybrid"* Transformers

- Combination of Mains-Frequ. Transformer & SST Fractional Power Processing \rightarrow High Efficiency Low Blocking Voltage Requirement Simplified Protection

Huge Multi-Disciplinary Challenges / Opportunities (!) are Still Ahead

Thank You!

Questions

Source: P. Aylward

www.pes.ee.ethz.ch/publications.html

Electronic Transformer - History

- System Using Mech. Switches *Patented Already in 1913* (!) Mechanical Sw. \rightarrow Tubes \rightarrow Mercury Arc Valves \rightarrow Solid State Switches

• "Transformer of Cont. Current" / "DC Transformer" / "Electronic Transformer"

E/1

ETH zürich

United States Patent Office

1

3,517,300 POWER CONVERTER CIRCUITS HAVING A HIGH FREQUENCY LINK William McMurray, Schenectady, N.Y., assignor to General Electric Company, a corporation of New York Filed Apr. 16, 1968, Ser. No. 721,817 Int. Cl. H02m 5/16, 5/30 U.S. Cl. 321—60 14 Claims

ABSTRACT OF THE DISCLOSURE

Several single phase solid state power converter circuits have a high frequency transformer link whose windings are connected respectively to the load and to a D-C or low frequency A-C source through inverter configuration switching circuits employing inverse-parallel pairs of controlled turn-off switches (such as transistors or gate turnoff SCR's) as the switching devices. Filter means are connected across the input and output terminals. By synchronously rendering conductive one switching device in each of the primary and secondary side circuits, and alternately rendering conductive another device in each switching circuit, the input potential is converted to a high frequency wave, transformed, and reconstructed at the output terminals. Wide range output voltage control is obtained by phase shifting the turn-on of the switching devices on one side with respect to those on the other side by 0° to 180°, and is used to effect current limiting, current interruption, current regulation, and voltage regulation.

Inventor: William McMurray; by Boule R. Comptell His Attorney.

1970

3,517,300

Patented June 23, 1970

- Transistor/Diode-Based "Electronic Transformer"
- AC or DC Voltage Regulation & Current Regulation/Limitation/Interruption

E/2