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ABSTRACT 
The parasitic capacitances of transformers significantly influence the resulting pulse 
shape of a power modulator system. In order to predict the pulse shape and optimize 
the geometry of the pulse transformer before building the transformer an equivalent 
circuit and analytic expressions relating the geometry with the parasitic elements are 
needed. Therefore, a model consisting of 6 equivalent capacitors and a simplified 
circuit as well as the belonging equations are presented in this paper. The equations are 
verified by measurement results for pulse transformers with parallel- and non parallel-
plate windings and a solid state modulator designed for linear accelerators. 

   Index Terms  —  Pulse power systems, Pulse transformers, Pulse shaping methods, 
Transformer modeling, Parasitic capacitance 

 
1   INTRODUCTION 

 High voltage and high power pulses are used in a wide variety 
of applications, for example in accelerators, radar, medical 
radiation production or ionization systems. In many of these 
applications the requirements on the generated pulses regarding 
for example rise/fall time, overshoot, pulse flatness and pulse 
energy are high. The pulses for these applications are usually 
generated with pulse modulators, which often use a pulse 
transformer for generating high output voltages. There, the 
parasitic elements of the transformer significantly influence the 
achievable shape of the pulse. 

For predicting the pulse shape of the modulator system, for 
designing pulse forming networks and for optimizing the 
geometry of the pulse transformer before building it an 
appropriate equivalent circuit of the transformer is needed. This 
equivalent circuit must on the one hand predict the transfer 
function of the transformer and on the other hand the parameters 
of the circuit should be analytically calculable with the geometric 
and electric parameters of the transformer. Therefore, an 
equivalent model of the pulse transformer and the analytic 
equations for calculating the parameters are presented in this 
paper. 

In [1, 2] a simple L-L-C model of the transformer is used to 
predict the resulting pulse shape. The value of the capacitance in 
this model is calculated by applying the equation for parallel-
plate capacitor [1] and for non parallel-plate capacitor [2] on the 
primary / secondary winding interface what results in 
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In both, only the distributed electric energy in the volume directly 

between the primary and the secondary winding is considered, 
what results in a relatively poor accuracy. This could be seen in 
figure 1 where a measured and two calculated pulse responses of 
a transformer are shown. The input voltage of the calculation 
models was the measured output voltage of the solid state switch. 
In contrast to the prediction of the simple models the result of the 
extended model matches the measurement results much better. In 
this model all the regions which are relevant with respect to the 
distributed energy are considered. 

Thus, in section II of this paper first the energies which are 
stored in the different relevant regions are calculated by analytic 
approximations. In the next step the calculated energies are 
compared with the energies stored in the equivalent circuit in 
section III. By this comparison the parameters of the equivalent 
circuit of the pulse transformer are determined. The suggested 
model comprises six capacitors and could be used in any 
connection of the transformer. If both windings are grounded the 
model could be simplified to an equivalent circuit with just one 
capacitor. With the considerations of section II the capacitances 
of the equivalent network can be calculated by means of the 
transformer geometry. Based on this equation a good prediction 
of the pulse shape is possible as shown in figure 1. 

Another possibility to obtain the parameter of the suggested 
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Figure 1. Comparison of measurement and the two different calculations 
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Figure 4.  Calculation of the energy WR1 
by means of the parallel plate capacitor 

equations. 

equivalent circuit is to use 2D FEM-simulations. For this reason 
the setup of the simulations is explained in section IV. The 
described setups also could be used to parameterize the model by 
impedance measurements. 

In section V the proposed equations are validated by 
comparing the calculated and the measured pulse shape for 
different operation and load conditions for a solid state pulse 
modulator. Finally, a conclusion is presented in section VI. 

 

2  CALCULATION OF PARASITIC 
CAPACITANCES 

For determining the equivalent capacitances of the pulse 
transformer’s equivalent circuit the distributed energies in all 
regions must be calculated. In order to be able to calculate the 
stored energies the 3 dimensional distribution of the electric field 
strength must be known. The field distribution, however, 
generally only could be calculated with time consuming numeric 
FEM-simulations. 

Since in most regions the run of the electric flux lines 
approximately lies within a plane which is parallel to the winding 
axis, the per unit energies for these planes are considered in the 
following. In figure 2 a 2D cut of the transformer with 
surrounding tank is given. There, six different planes/regions are 
shown which are considered in the following for calculating the 
stored energy.  

Since the calculations are performed for planes per unit 
energies result. In order to obtain the value of the stored energy 
of the respective region the per unit energy must be multiplied by 
the lengths shown in figure 3.  

The areas/volumes which are not covered by a region are 
neglected in the following, since the energy density and 
therewith the share in the total equivalent capacitance is 
relatively small as could be proven by FEM-simulations.  

The presented calculations are performed for pulse 
transformers with non parallel-plate and also for transformers 
with parallel-plate windings. However, the presented procedure 
can analogically applied to other winding arrangements. 
Furthermore, it is assumed that the core and also the tank is 
grounded what is usually true in practice. 
In the following paragraphs the stored energies for the six 

regions are calculated separately. There, the presented equations 
always represent the part of the energy which is stored in the 
winding of one leg, that means that for example the energies 
must be multiplied by two for the setup shown in figure 2/3.  

2.1 ENERGY BETWEEN THE WINDINGS – R1 
In region R1 the area between the primary and the secondary 

winding is summarized. 
This is the only area which 
is considered for 
determining the equivalent 
circuit of the pulse 
transformer in the approach 
presented in [1, 2] – cf. 
equation (1).  

For simplifying the 
calculation of the energy 
WR1 between the primary 
and the secondary it is 
assumed in the following 
that both windings 
approximately could be 
modeled by a conductive 

plate with a linear voltage distribution. The primary winding is 
grounded at the lower side and the voltage at the upper end is V1, 
whereas the voltage distribution of the secondary winding starts 
at the offset voltage V3 at the lower end and ends at V2+V3 as 
shown in figure 4. In case the secondary winding is also 
grounded voltage V3 is zero. 

With the assumed voltage distribution the voltage difference 
between the two plates and the distance between the two plates 
could be written as 
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There, d1 is the distance at the lower end and d2 at the upper end. 
In order to simplify the calculations further, the electric flux 

lines between the primary and the secondary winding in region 
R1 are approximated by straight lines which are orthogonal to the 
primary winding. In this case the energy stored in the differential 
element dx could be calculated by 
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Integrating this expression along the primary winding yields 
the total per unit energy 1RW ′  which is stored in the plane (R1) 
between the two plates. Multiplying the per unit energy by the 
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Figure 3.  Definition of the lengths for the distributed capacitances. 
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Figure 2.  Regions for the distributed capacitance of a pulse transformer 

with non parallel-plate windings. 
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length lR1 (cf. fig. 3) yields the energy WR1 stored in region R1. 
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In general, this energy depends on the voltage difference 
between the two plates and also on the offset voltage of the 
secondary winding. The evaluated integral is given in the 

appendix. 
So far it has been assumed that 

the materials between the two 
plates have the same permittivity 
εIso  = εOil = ε = ε0εR. Usually, the 
space between the two windings is 
filled with oil and the coil former 
of the secondary winding. If these 
two materials have a different 
permittivity an equivalent value 
for the permittivity could be 
calculated by 
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This equivalent permittivity is a function of x since the path 
length of the field line in the oil varies with x. Substituting the 
permittivity in equation (3) by this expression and calculating the 
energy results in (cf. appendix) 
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Again, the voltage V3 could be set to zero if the secondary 
windings is also grounded and the voltage V4 could be 
substituted by V4 = V2 - V1. 

For a transformer with parallel windings the distance d is 
constant (cf. eq. (2) and figure 5) and the energy in region R1 is 
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2.2 WINDING WINDOW: ABOVE SECONDARY – R2 
Region R2 consists of the area above the secondary winding 

within the winding window. The border of this region has a 
complex shape which is determined by the core, the primary 
winding and the E-field shaping ring. In order to be able to 
calculate the distributed capacitance of this region analytically 
the geometry is simplified as shown in figure 6. First, it is 
assumed that the primary winding consists of a metal plate which 
is grounded, i.e. V1 is neglected since V2 = N·V1 >> V1. 
Furthermore, this plate is extended so that the upper end touches 
the core. Second, the influence of the secondary winding is 
neglected as well as the E-field shaping ring and the 
core/extended primary are replaced by circles. These 
simplifications result in a coaxial structure whose energy is 
approximately (±10%) the same as the one of the original 
structure as has been proven by FEM-simulations. 

The energy stored in the coaxial structure in figure 7(a) could 

be calculated with the equation for the cylindrical capacitor, what 
results in the per unit equation 
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There, only one half of the energy is calculated since equation 
(8) represents the part of the energy which is stored in the 
winding of one leg. i.e. half the region R2. 

The factor k is empirically determined by FEM-simulations so 
that the resulting difference between the energy of the original 
structure and the equivalent one is minimal. In [3] a similar 
transformation is described but the factor k is set equal to 1.16. 
For the considered setup, this choice resulted in a larger error for 
the equivalent energy than k=1.08. 

In order to obtain the energy WR2 the per unit energy W´R2 
must be multiplied by lR2. This energy is independent of the 
winding arrangement (parallel- or non-parallel-plate). 

2.3 ABOVE SECONDARY WINDING OUTSIDE 
WINDING WINDOW – R3 

Region R3 is the equivalent of region R2 outside the winding 
window, but there the run of the border in the upper region is 
more complex. For simplifying the setup it is assumed that the 
primary winding consists of a grounded plate (i.e. neglect V1 << 
V2) which is stretched to the cover of the tank. The influence of 
the cover itself is neglected since its distance to the E-field 
shaping ring is relatively large (cf. fig. 2). Furthermore, it is 
assumed that the E-field shaping ring is in the middle of the 
primary winding and the wall of the tank, what is approximately 
fulfilled for a compact design, where the distance between the E-
field shaping ring and the tank is equal to the minimum possible 
one fixed by the insulation requirements. 

 
 The resulting rectangular border is again approximated by a 

coaxial structure as shown in figure 7(b). With this 
approximation the stored energy for this structure could be 
calculated by 
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Figure 6. Simplification of the region R2 to a coaxial structure. 
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Figure 7.  (a) Equivalent structure for calculating the energy of region R2. (b) 
Original and simplified geometry for region R3. 
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where k is empirically adapted by FEM-simulations again. For 
this structure the value which results in a minimum error is 
1.275, which is the same as proposed in [2]. 

 

Remark: In case the transformer is not inside a grounded tank 
the plate on the left hand side in figure 7(b) must be omitted. 
There, the geometry could be simplified by assuming that the 
primary winding is grounded and extended to infinity so that the 
energy in this region could be calculated with the equations for 
the capacitance of two wire line (transmission line). This results 
in 
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for the energy stored in region R3 which is again independent of 
the winding arrangement. 

2.4 BETWEEN SECONDARY AND TANK – R4 
The energy between the secondary and the wall of the tank 

below the E-field shaping ring is partially included in region R4. 
There, the wall of the tank and the secondary winding form a 
non-parallel plate capacitor with a approximately linear voltage 
distribution again. The voltage and the distance between the 
plates are given as a function of x by 
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where the variables are defined as shown in figure 8(a). Using 
these expressions the energy could be calculated by  
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as described in section II.A (cf. appendix). For a transformer with 
parallel windings the wall of the tank and the secondary winding 
form a parallel plate capacitor and equation (12) could be 
simplified to  
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since the distance d (cf. eq. (11)) is constant.  
Assuming a compact system, the distances could be set to d’2 = 

d2 and d’1 = 2d2 - d1 as also has been done for region R3.In figure 

8(b) a plot of the simulated electric flux lines between the 
secondary winding and the tank is shown. There, it could be seen 
that especially at the upper and the lower end of the winding 
(blue circles) the run of the simulated flux lines deviates from the 
one which has been assumed in the calculation model for region 
R4. At the upper end the reason for the deviation is the E-field 
shaping ring. At the lower end the field is mainly distorted by the 
voltage distribution on the secondary and also by the proximity 
of the core and the primary winding. With a parallel winding 
arrangement the distortion at the lower end is much smaller than 
with a non parallel-plate winding as shown in figure 8(d). 

 These deviations result in a reduced accuracy of the explained 
calculation method for region R4. The exact run of the flux lines, 
however, just could be calculated with time consuming FEM-
simulations. Furthermore, due to the small share of the energy 
stored in these parts of region R4 in the overall stored energy the 
resulting overall error for calculating the effective capacitance is 
relatively small. 

 

Remark: In case the transformer is not inside a grounded tank 
the deviations at the lower end of the secondary winding shown 
in the blue circle in figure 8(b) increase. That means that the 
electric flux lines at the left side of the secondary winding in 
figure 8(b) tend to start at the upper end of the winding and end 
at the lower end/core. Unfortunately, the energy stored within 
this field distribution could not be easily calculated with the 
approaches used here. Instead of that the energy must be 
calculated by FEM-simulations. 

2.5 WINDING WINDOW: BELOW SECONDARY – R5 
In the next step the energy stored in region R5, i.e. below the 

secondary winding in the winding window, is calculated. There, 
the electric flux lines are approximated by straight lines again. 
These lines start at the secondary winding and are orthogonal to 
the winding window of the grounded core as shown in figure 
9(a).  

With this approximation the stored energy could be calculated 
as described in section II.A for region R1. The resulting equations 
are 

 2 3 0
2 1 2 1

( ) ( ) Wx hV x V V d x x d
d d d d

= + = +
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and 
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where the evaluated integral is given in the appendix again. 
Due to the limited volume and the low average energy density 
the stored energy usually is relatively small and could be 
neglected in many cases. This is particularly true for parallel-
plate windings which can not be modeled by simple analytical 
approaches why the equations are omitted. 

2.6 AREA BETWEEN PRIMARY AND CORE - R6 
Finally, the energy stored between the primary winding and 

the core is calculated which is independent of the winding 
arrangement. The structure of the winding and the core act like a 
parallel plate capacitor with two different dielectrics – the oil and 
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Figure 8.  Definition of the variables for region R4 for non-parallel plate (a) 
and parallel plate windings (c). Electric flux lines between the secondary 

winding and the wall of the tank for non parallel plate (b) and parallel plate 
windings (d). 



 

the coil former of the primary winding as shown in figure 9(b). 
Assuming a linear voltage distribution again, the voltage 
distribution, the distance and the permittivity are 
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and the energy could be calculated by 
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2.7 WINDING CAPACITANCE 
So far, only the stored energy/capacitances between the 

windings or between one winding and the core/tank have been 
considered. But also between the singe turns of one winding 
electric energy is stored. This energy could be calculated by 
approaches presented in [5-7].  

Due to fact that the windings are usually implemented with 
only one / two layers and the turn to turn voltage is relatively 
small as well as the distance between the single turns is relatively 
large due to the insulation this part of the stored energy usually 
could be neglected. 

3  EQUIVALENT CIRCUIT OF A PULSE 
TRANSFORMER 

In the last preceding section the energies stored in the different 
regions of the pulse transformer/tank setup have been calculated. 
In the next step the parameters of the equivalent circuit of this 
setup are calculated. This is performed by comparing the energy 
stored in the equivalent circuit, which is a function of the 
independent voltages V1-V3, with the calculated stored energy, 
which is also a function of V1-V3 (V4=V2+V3-V1). For determining 
the energy stored in the equivalent circuit, first an appropriate 
equivalent circuit must be chosen. 

As could be shown the electrostatic behavior of an arbitrary 
transformer could be modeled by a three input multipole 
(primary and secondary voltage and the voltage between the 
windings) [3]. In the linear working area and as long as 
propagation times can be ignored, the electrostatic energy / 
behavior of this multipole could be modeled by six independent 

capacitors as shown in figure 10. 
The energy stored in the equivalent circuit is given by 
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what results from 21 2 CCV . In the same manner the calculated 
energy stored in the different regions of the setup in figure 2 
could be written 
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where V4 has been replaced by V4 = V2+V3-V1 and the factor 2 
results from the fact that the energies have been calculated for 
each leg separately.  

Since both energies must be equal WEq=WCal the equations of 
the capacitors can be derived by setting the coefficients of the 
variables/voltage terms V1, V2, V3, V1V2, V1V3 and V2V3 equal. 
This results in six independent equations which can be solved for 
the capacitances C1-C6.  

 
In contrast to the results published in [3] the capacitors C1/C2, 

C3/C4 and C5/C6 are not interdependent for the non parallel-plate 
winding since the windings are not arranged in parallel and 
therefore the winding construction is not symmetric with respect 
to the low and the high side. 

With the described model the transfer behavior of the pulse 
transformer and therewith the influence on the transferred pulse 
shape could be calculated and/or simulated for arbitrary 
connections. Moreover, with the equations relating the geometry 
of the transformer directly with the capacitances of the equivalent 
model the construction of the transformer could be optimized for 
the required transfer behavior. 

3.1 SIMPLIFIED CIRCUIT WITH NEW EQUATIONS 
In many pulse power applications the pulse transformer is not 

used for galvanic isolation and the low side of the primary as 
well as the low side of the secondary winding are grounded, i.e. 
V3 = 0 in figure 10. In this case capacitor C3 is replaced by a 
short circuit and C1/C6 as well as C2/C5 are in parallel. Moreover, 
the voltages across all capacitors could be derived from the 
primary and/or secondary voltage by using the turns ratio N. 
With the voltages known the energy which is stored in the 
capacitors could be calculated as a function of the secondary (or 
primary) voltage.  
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Furthermore, the equivalent circuit could be simplified to the 
circuit shown in figure 11(a). Neglecting the parallel resonance 
between the leakage and capacitor C4 this circuit could be further 
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Figure 9.  (a) Variables / simplified run of electric flux lines for region R5. (b) 
Definition of variables for region R6. 
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Figure 10.  General equivalent circuit of pulse transformer. 



 

simplified to the circuit shown in figure 11(b), where only one 
capacitor is used which is transferred to the secondary side. 

The capacitance value for the equivalent capacitor referred to 
the secondary side is 
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d

d
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+ −
= + + +
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The circuit of figure 11(b) is the same as used in [1, 2] but in 
those publications no equation for calculating the equivalent 
capacitance Cd from the geometry of the transformer was given 
except for the simple parallel plate approach for the region 
between the windings. 

4  DETERMINATION OF THE EQUIVALENT 
CIRCUIT BY FEM-SIMULATION OR 

MEASUREMENT 
Besides the presented possibility to calculate the values of the six 
capacitors of the general equivalent circuit (cf. fig. 9) by means 
of the transformer geometry it is also possible to obtain the 
values by measurement or by FEM-simulation.  

Since there are six independent capacitors in the equivalent 
circuit, six independent simulations / measurements must be 
carried out. The belonging measurement setups are shown in 
figure 12.  

For the measurement results following below the values of the 
capacitances have been determined by using resonance peaks in 
the impedance plot. The required inductance values are directly 

measured with an impedance analyzer Agilent 4294A and then 
the capacitances are calculated with the frequency of the 
resonance peak. 
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With the measured capacitances the values of the equivalent 
capacitors of the circuit in figure 10 could be calculated by the 
following equations (cf. figure 13). 
Instead of measuring the capacitances with an impedance 
analyzer, the same setups could be used for determining the 
capacitances by FEM-simulations. There, either 3D simulations, 
which are quite accurate but very time consuming, or 2D 
simulations as shown in figure 14, which are much faster but less 
accurate, could be performed. The equivalent capacitors could be 
calculated with the same equations (22) as used for the 
measurements. 

 

5  MEASUREMENT RESULTS 
In order to verify the presented equations measurements at the 

pulse transformers shown in figure 15 excited by the solid state 
modulator shown in figure 16 have been carried out. The 
measurements have been conducted at relatively low voltage 
(<2kV) so that very fast and accurate probes could be used and 
measurement errors related to voltage dividers could be 
minimized. Furthermore, during the measurements both 
windings were grounded, i.e. V3 = 0, and the transformer was not 
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Figure 13.  Calculated equivalent circuit for the transformer in figure 14(b).
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Figure 11. (a) Simplified equivalent circuit (cf. fig.10).  (b) Approximated 
simplified circuit with capacitances transferred to secondary side. 
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Figure 14.  2D FEM-simulations for a transformer with non parallel-plate 
windings (cf. figure 15(b)). 
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Figure 12.  Measurements for determining the equivalent capacitances. 



 

inside a tank since none was available at the time of 
measurement. Further measurement results with tank and also 
loss equations will be presented in a future paper. 
The equivalent circuit calculated for the transformer shown in 
figure 15 is given in figure 13. There, also the leakage inductance 
and the magnetizing inductance are shown, which can be 
calculated from the magnetic field distribution in the window / 
core. 

In table 1 measurement, simulation and calculation results for 
the transformers shown in figure 15 are given. There, it could be 
seen that the analytic and simulated values correspond very well 
with the measured ones.  

 
Table 1 - Values for CM1 - CM6 for measurements, simulation and analytic 
calculation for the transformers shown in figure 15 with non-parallel-plates (a) and 
parallel plates (b) in air without tank. 

a)  Measured Simulated Calculated 
1 1.19 nF 1.15 nF 1.25 nF 
2  350 pF  320 pF  316 pF 
3  1.2 nF 1.1 nF  1.25 nF 
4  50 pF 63 pF 50 pF 
5  347 pF  450 pF  350 pF 
6  325 pF  427 pF  360 pF 

b)  Measured Simulated Calculated 
1 418 pF 446 pF 428 pF 
2 121 pF 138 pF 127 pF 
3 335 pF 394 pF 393 pF 
4 58 pF 53pF 49 pF 
5 190 pF 167 pF 141 pF 
6 150 pF 133 pF 153 pF 

 
In figure 17 for example measured pulse responses and in 

figure 18 the overshoot in an enlarged scale are shown for a solid 
state modulator with the specification given in table 2 and a 
transformer with parallel-plate windings. Additionally, curves 

resulting from the model with six capacitors where the 
capacitance values have been determined by analytic 
calculations, simulations and impedance measurements are 
shown in figure 18. There, it could be seen that the pulse shape 
including ringing could be predicted very well by means of the 
presented set of new equations. 
 

Table 2 - Specification of solid state modulator 
Output voltage 200kV 
Output Power 20MW 
Pulse Duration 3-7µs 

Repetition rate 500Hz 
 

 
 

 

6 CONCLUSION 
In this paper a general model for pulse transformers which 

allows for predicting the pulse shape of a modulator system 
before building the transformer is presented. The parameters of 
the model can be calculated analytically from the geometry of the 
transformer or can be determined by simulation or measurement.  

If both windings are connected to ground the presented model 
could be simplified to the known L-L-C. Furthermore, from the 
equations of the general model, new analytic expressions for 
determining the parameters of the simple model based on the 
energy distribution in all relevant regions of the transformer are 
derived.  

Both, the general and the simplified model based on the new 

 
Figure 16.  Solid state modulator with 4kA/1kV per switch used for 

measurements. 

        
Figure 15.  Picture of the pulse transformer with non parallel-plate (a) and 

parallel-plate windings (b) used for the measurements. 
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Figure 17.  Measured and calculated pulse response for a load resistance 
of 2500Ω and the transformer with parallel-plate windings. 
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Figure 18.  Measured, simulated and calculated pulse for 2500Ohm load. 



 

equations show a good correspondence with the presented 
measurement results for non parallel-plate and also for parallel 
plate winding arrangements. 

 

APPENDIX - EQUATIONS 

In the following the evaluated integral equations for the 
regions R1, R4 and R5 are listed.  

In region R1 the energy for εIso  = εOil = ε, i.e. eq. (4), could 
be calculated by 
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and for unequal permittivities by 
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The energy stored in region R4 results with equation (12) 
from 
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There, the variables d’1 and d’2 are defined in figure 9.  
Finally the energy stored in region R5 could be calculated with 
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