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Finite-Element Analysis of the Frequency
Response of a Metallic Cantilever Coupled With a
Piezoelectric Transducer

Luca Dalessandro, Student Member, IEEE, and Daniele Rosato, Student Member, IEEE

Abstract—This paper is devoted to modeling the dynamic re-
sponse of an electromechanical system consisting of a piezoelectric
transducer glued on part of the upper surface of a metallic can-
tilever. The piezo works both as vibration sensor and as actuator,
and the system is the basis of many vibration-control devices of
current interest. A three—dimensional (3-D) finite-element method
(FEM) model that reproduces the physical system is proposed, and
its advantages with respect to an analytical approach and to one-di-
mensional (1-D) and two-dimensional (2-D) FEM models are dis-
cussed. In sensor mode, the frequency response in terms of the
voltage at the electrodes is drawn; while in actuator mode, the fre-
quency response of acceleration and displacement at the free end
of the cantilever is calculated. The 3-D model has been verified
through the comparison with the results from the experiment car-
ried out at the University of L’Aquila, Italy. Furthermore, exper-
imental inaccessible quantities such as stresses at the piezo—can-
tilever interface are computed in both modes as a preliminary step
in the study of delamination phenomena and their impact on the
performance of the system in vibration-control applications.

Index Terms—Debonding, electromechanical system three-di-
mensional (3-D) modeling, finite elements, frequency analysis,
piezoelectric transducer.

1. INTRODUCTION

IEZOELECTRIC materials possess intrinsic electro-

mechanical coupling effects, by virtue of which they
have found extensive applications in smart devices such as
electromechanical actuators and transducers. They are largely
used in active vibration control and noise suppression of
sensors in structures of different scale: rockets, weapon sys-
tems, smart skin systems of submarines, and so on [1]-[3].
Piezoelectric plates appropriately assembled with structural
elements can make up proper micromachines, for instance
microelectromechanical systems (MEMS) or microsystems
technology (MST), that have applications ranging from recent
technologies of biomedical engineering to silicon technology
[4]1-[7]. Adhesive bonding of two piezoelectric bars (with one
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of them transversally and the other longitudinally polarized)
allows one to realize an alternating voltage transformer, which
has good features to work for high voltages and low currents.
These are the fundamental requirements to supply devices such
as cathode ray tubes (CRTs) or particle accelerators.

In these applications, where piezoelectric devices are glued
to the oscillating support, it is often necessary to assess ex-
perimentally inaccessible quantities, such as interlaminar me-
chanical stresses, electric potential, and field within the mate-
rial, the knowledge of which is crucial to optimize the perfor-
mance of the device and in order to assure correct working of the
system. Sun et al. [8], Holnicki—Szulc, and Marzec [9] address
the technological problem of debonding, i.e., the disjunction
of the piezoelectric lamina from the host structure. Debonding
compromises the system’s working capacity and can decrease
the efficiency of the control and measurement apparatus. Since
the typical dimension of debonding phenomena is of microm-
eters or tens of micrometers in magnitude, a pointwise knowl-
edge of interfacial mechanical stresses is necessary. For this aim,
it is opportune and highly appropriate to use the finite-element
method (FEM) [10]. The analytical solution of the differential
equations providing the fields at the interface can be easily made
for a one-dimensional (1-D) model of the system [11], [12],
or for simple geometries [3], [13], but is very complicated for
higher dimensional models and for complex geometry. How-
ever, only the resultant forces and deformations can be calcu-
lated through an analytical approach, and this does not provide
any information on the points of the structure that are highly
stressed. Moreover, if the coupling between longitudinal, flex-
ural, and torsional modes is not included through a 3-D model
[14], by adopting instead only a 1-D or two-dimensional (2-D)
model, then the quantities calculated present large errors [10],
[15]. For instance, under the assumption of a 1-D model, the
interlaminar tangential stresses, which are the main stresses re-
sponsible for the disjunction of the two laminas, are zero. Be-
sides the pointwise determination of the interfacial mechanical
quantities, FE analysis also allows one to compute the pointwise
values of the electric potential and field within the piezoelectric
plate.

This paper analyzes the frequency response of the electro-
mechanical system shown in Fig. 1, made up of a metallic can-
tilever on which a piezotransducer is bonded. A 3-D FE model
is proposed and discussed that reproduces with high accuracy
the real physical system. This model allows us to compute the
interfacial mechanical stresses and the pointwise values of the
electric potential and field within the piezoelectric plate, all of
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Fig. 1. Electromechanical system studied, made out of a metallic cantilever
clamped at one end by a cylindrical oscillator, and of a piezoelectric transducer
glued on part of the cantilever upper surface.

which are quantities that can not be derived through an analyt-
ical model or by an experiment. This model is also able to take
into account the coupling between the bending, normal, and tor-
sional vibration modes of the metallic cantilever induced by the
piezoelectric transducer. Including this coupling into the model
is important since it has influence on the values of the resonance
frequencies of the system and on the amplitude of the stresses
and deformations. Furthermore, the proposed 3-D model pro-
vides a simple and useful tool for the control design, because
it accurately reproduces the physical system with the advantage
that it is easier to handle and provides a quick access to the vari-
ables of the system. These aspects are clear advantages in com-
parison to the existing 1-D and 2-D models.

The frequency analysis is extended up to several kilohertz;
this band includes the first resonance peaks. These are the most
interesting for practical applications because of their higher am-
plitude values that are very unfavorable. This particular system
is chosen because information about the frequency behavior was
already available, as the system had already been studied in the
course of an experiment carried out at the Dynamics Lab of the
University of L’ Aquila, Italy. The setup has been used in order
to study structural vibrations and to control them via piezotrans-
ducers, and the debonding of the piezo from the cantilever has
been observed during the tests.

For this reason, it is interesting to compare the results of the
present work with experimental ones [11], in order to verify the
validity and correctness of the model and then go ahead with
the FE calculation of the fields at the interface. The consid-
ered system is not miniaturized, but it is the prototype of those
used on a different scale for the most disparate applications. For
example, a cantilever with a length of some hundreds of mi-
crometers that hosts an integrated piezoelectric actuator/sensor
can be used for extremely sensitive measurements in a wide va-
riety of signal domains, including electrical, thermal, chemical,
and magnetic. The analysis of the quantities necessary to de-
scribe and predict the behavior of the electromechanical system
studied herein can be extended to similar systems but on a mi-
croscopic scale, where the interaction between electrical and
mechanical phenomena becomes stronger; the system model,
however, remains the same as that suggested in this paper.

This paper is organized as follows. In Section II, the rela-
tions which model the piezotransducer are presented. Section III
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contains some preliminary numerical results that confirm the
hypotheses of the system behavior and of the particular model
proposed. Finally, in Section IV, Bode plots of the frequency re-
sponse are presented and, furthermore, the interfacial mechan-
ical stresses corresponding to the first resonance of the system
are shown.

II. 3-D MODEL OF THE PIEZOELECTRIC TRANSDUCER

The piezotransducer 3-D model is completely defined by the
physical laws of linear dielectrics electrostatics [16] and homo-
geneous solid elastodynamics [17], [18]: these laws provide dif-
ferential equations that are integrated for the system’s dynamic
analysis, presented in Section IV. The same equations we use
hereafter to model our system are presented in another form in
[13]. We wish to underline the compactness and the clarity of the
direct (tensor) notation used throughout, which allows an easier
understanding and a faster implementation of the physical rela-
tions necessary for modeling the system. Even if the 2-D models
presented in [13] and [15] show themselves to be more accu-
rate in comparison to the 1-D models suggested in [11], [12],
they do not allow the performance of any pointwise analysis on
mechanical stresses and electric fields within the materials. The
relations which describe the electromechanical system are pre-
sented as follows. The balance equations

{leD:pL

on the body’s surface become

{D-TLZO'L

Tn=p @)

The kinematic constraints are

E=-Vo
{ S = 1(Vu+VuT)- )

Here, E is the electric field vector, D is the electric displacement
vector, ¢ the electric potential, and py, and o, are the volume
and surface charge densities, respectively. S represents the in-
finitesimal strain tensor, 7 is the stress tensor, u the displace-
ment field (Vu” is for the transpose of V), n the outward unit
normal to the boundary, Fy and p are, respectively, the body
forces and the density in the reference configuration, and p rep-
resent the surface forces. The symbols V and div indicate gra-
dient and divergence. Constitutive equations should be added to
the previous relations and should be formulated with the aim of
taking into account the lowest coupling possible between each
of the quantities of the following pairs:

(S,E)(S,D)(T,FE) (T, D).

If S and E are chosen as independent variables, constitutive
relations assume the following form:

_ Eqg _
{T—CS el ()

D=e¢T'S+5E
where ¢Z is the tensor of rank four of the elastic constants

holding as constant the electric field E,e° is the tensor of
rank two of the dielelectric permittivities for constant .S, and e
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(eT being the transpose of e) is the tensor of rank three of the
piezoelectric constants. Let us recall that piezoelectricity does
not introduce new physical laws; the novelty is in the coupling
between electrical and mechanical quantities. Generally, the
piezoelectricity constitutive law is obtained by choosing an
opportune thermodynamic function (function of the selected
independent variables) and linearizing it around its minimum
point [19], [20]. The previous relations provide the differential
equations only in terms of the state variables ¢ and w.

By using Voigt notation, which allows to convert a tensorial
formulation into a matrix form [21], [22], the piezoelectric con-
stitutive equations (4) assume the form we have implemented
and used for the FEM analysis

o1 ci1 c¢2 c¢c3 0 0 0
o2 Cl12 €22 c3 0 0 0
o3| |ci3 c3 ¢33 0 0 O
g4 - 0 0 0 Cyq4 0 0
a5 0 0 0 0 Cs5 0
agg 0 0 0 0 0 Cg6
€1 0 €12 0
S5 0 €22 0 E1
% (SR} . 0 €12 0 E2
€4 0O 0 O E
€5 0 0 0 3
£ 0 0 0
€1
D, 0O 0 0 00 0]
Dy| = |en e e 0 0 0f |3
D3 00 0 00 of |
&g
e 0 0] [E;
+10 & 0 E, 3)
0 0 6% E3
The parameters e;;(i = 1,2;j = 2) in (5) are called piezo-

electric stress coefficients and represent the ratio between the
mechanical stress applied to the piezoelectric plate in direction
xi(zi,i = 1,2, 3 represents the unit vector of the reference co-
ordinate frame) and the electric field along x;, or equivalently,
the ratio between the charge on the electrodes and the mechan-
ical strain (dimensionally N/Vm). One can prove that the matrix
of elastic constants c;;, the matrix of piezoelectric coefficients
e;; and matrix of permittivities €7 assume the structure shown
in (5) in the case of transverse isotropy. The dielectric losses are
ignored so that the dielectric permittivity matrix turns out with
real coefficients. Such an assumption is admissible considering
the frequency range [0—1000] Hz to which the frequency anal-
ysis is extended. The elastic constant matrix also possesses real
coefficients, but the mechanical losses are taken into account by
damping coefficients. If one assumes that the piezoelectric solid
is isotropic, the coefficients of matrix c¥ are given by

(1-v)
(14+v)(1-2v)
20G
(1-2v)
Cyq = C55 = Ce6 = G (6)

C11 = C22 = C33 =

Ci12 = C13 = C23 =
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Fig. 2. Effect of the piezoactuator extension on the metallic cantilever due to
the applied voltage.

where E is Young’s modulus, G shear modulus, and v Poisson’s
ratio.

In the actuator function, the stress acting on the piezoelectric
plate due to the effect of the applied electric field, gives rise to
expansions and contractions of the plate along the z; direction
(cf. Fig. 3). Moreover, since the actuator is glued to the metallic
cantilever, this latter transfers axial (flexural) stresses every time
it bends because of the actuator’s action (cf. Fig. 6 in [12]). The
oscillating cantilever also transfers axial stresses to the piezo-
plate operating in the sensor mode. Therefore, the piezoplate is
loaded by an eccentric axial force, to which an axial stress state
corresponds. In our analysis, we assume a plane stress state and
x3 as the principal direction perpendicular to the principal plane
r1 — T, which is stress free (cf. Fig. 4).

For the sake of completeness, let us observe that the can-
tilever beam model is traced back to the generalized form of
Hooke’s Law and to the motion equation already introduced for
the piezoelectric plate. Table I shows the values of geometrical
and material parameters we adopt, chosen to match the existing
experimental setup [11], [23].

III. PRELIMINARY TESTS ON PIEZOELECTRIC PLATE,
CANTILEVER BEAM, AND COUPLED SYSTEM

Before the frequency analysis, preliminary tests were carried
out on the system model that consider the metallic cantilever
beam separately from the piezoelectric lamina. The aim of these
tests is to confirm the assumptions on the mechanical behavior
of the system and to verify the assignment of material param-
eters made by matrices of a particular structure as introduced
in the previous section. We implement FE models of the piezo-
electric transducer, of the metallic cantilever, and of the cou-
pled system using plane stress elements. Computations are per-
formed by implementing the user-defined models and boundary
conditions in the finite element software package ABAQUS.

At first, we verify the longitudinal functioning of the piezoac-
tuator, which by shrinking and expanding, stretches the can-
tilever upper fibers to which it is glued, thus making it oscillate
as shown in Fig. 2. The piezoactuator is modeled assigning the
mechanical, dielectric, and piezoelectric properties through (5)
and, moreover, using the same geometry of the device present
in the electromechanical system of the experiment. The lower
basis and the left edge of the piezoplate are bonded with sliding
bearings in order to allow dilatations along the horizontal and
vertical directions. The lower electrode potential is set as zero,
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Fig. 4. Sketch of the piezoelectric plate.

and the upper one is assigned an alternating voltage of 100 V. By
this numerical simulation, two snapshots of which are shown in
Fig. 3, the desired longitudinal vibrations are verified instead of
the thickness oscillations.

We have verified with a similar approach the presence of a
voltage across the piezoelectric plate working in sensor mode,
which is due to vibrations of the cantilever oscillating with ac-
celeration at its clamped end of 1 m/s? in magnitude.

Afterwards, the system’s natural frequencies have been
extracted to perform a first comparison with the experimental
values and to have a first assessment of the flexural modes oc-
curring in the frequency band of the analysis. The piezoelectric
lamina was first considered separately from the metallic one.

The piezotransducer with an alternating voltage of pulsation
w applied across its upper and lower surfaces is shown in Fig. 4.
The electric current is provided by

I = ]w/ D2 d."l:l dl‘g (7)
)D

Scale Factor: +0.33

Scale Factor: +0.71

TABLE 1

MECHANICAL AND ELECTRICAL CHARACTERISTICS OF MATERIALS

Two snapshots showing the longitudinal vibrations of the piezoactuator induced by applying an alternating voltage across the lamina. In particular, the
sliding bearings fixed to the lower basis allow the lamina’s displacement along 1.

CANTILEVER PIEZO
Material Aluminium PZT
Si 0 .=510 mm 0 =50.8 mm
ize
we=25.4 mm w=254mm
Height he=3.175 mm h=0.381 mm
Density =2773 "V =7700 "V
A Pa E m? p 'm3
Young’s modulus | Ex=677-100 /> | E=69-10" Y/,
Poisson’s ratio va=0.3 v=03

Piezoelectric
strain
coefficients

di=-179 10" ",
=350 107 "4,

Dielectric
Permittivity

8 =1.59-10% £/

Moment of
Inertia along x;

J1=6.77-10"

where Y. indicates the electrode surface, j is the imaginary unit,
and D is the component of D along x». The admittance can be
calculated as the ratio of the current and the voltage across the
plate [19], and its value is given by

ki, teC

Y = juCh (1 b2 T) ®
12



DALESSANDRO AND ROSATO: FE ANALYSIS OF THE FREQUENCY RESPONSE OF A METALLIC CANTILEVER

o, o2
+1.000e-00

+9.583e-01
+9.167e-01

+8.333e-01
+7.917e-01
+7.500e-01
+7.083e-01

[=]
[}
1
[=]
it

[ =T |
)
[
==
=1

=L U e 00 3 L)
w w
o n
) [}
=) o
= P

+1.667a-01
+1.250e-01
+8.333e-02
+4.167=-02
+0.000=-00

+1 .000e+00

! T

DTN T3] "~

~J =)

(=] ~J

I Apur|
mmmmmmmmmmmmmni'nnlmn;-nanln

[
= B

[
(afalalalalalalalelolololelelelo]elelelolel-]

=1

Fig. 5.

where Cj, is the static capacitance (w = 0), defined as

eswl

5 ©)
where £, w, and h are, respectively, the length, width, and height
of the piezoelectric lamina. The electromechanical coupling co-
efficient ky» is defined as d?, /(g5 s¥'); s is the elastic suscep-
tibility or the inverse of the elastic constant ¢¥ in the direction
x1. The coefficient d;5 is a piezoelectric strain coefficient, de-
fined as the ratio of the induced mechanical strain along x; of
the piezoelectric plate and the applied electric field in direc-
tion zo; €12 = Fdq2 provides the relation between piezoelectric
stress and strain coefficients. ( is dependent on lamina charac-

teristic parameters
¢= wl D
2\ k.

The resonance and antiresonance conditions are

Co =

(10)

Y — 00 tgl — oo (shortcircuit)
ted _

k2
12 85 _

Y 0 1+ —=
I s

(open circuit)
In particular, resonance frequencies are provided by

(2n—1) i

fa= ", P

(1)
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(2)

(b)

Shape functions corresponding to (a) the first and to (b) the sixth flexural oscillating mode. The legend indicates the value of the displacement u..

By substituting n = 1, the formula (11) yields f; = 29.5 kHz,
which is the first resonance frequency of the piezoelectric plate.
This value is much larger than the resonance frequency of the
metallic beam, and outside the frequency band of interest for
our analysis. This was foreseen because the metallic cantilever
possesses dimensions ten times larger than those of the piezo-
electric lamina. The dependence of the frequency value on the
mass is expressed in (13). It is important to note that the previous
analysis is independent of the working mode of the piezoelec-
tric plate.

On the other hand, theoretical values of natural frequencies
of the metallic cantilever can only be determined through the
motion equation

Ea
2(1 =+ I/A)

Ea
A di Fa = paii
“+2(1+VA)(1—21/A)V vt Fa = pat

12)

in the unknown displacement u(x,t). Fa and pa are, respec-
tively, the body forces and density of the metallic cantilever in
the reference configuration, and E and v are Young’s mod-
ulus and Poisson’s ratio for aluminum. The solution of (12) for
the case of pure bending in the z» — x3 plane (cf. Fig. 5), pro-
vides the theoretical values of the natural frequencies

ki [EaJ:

23 _ Ki
fit =g

ml3 ()
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TABLE 11 TABLE III
NATURAL FREQUENCIES OF THE METALLIC CANTILEVER SYSTEM’S NATURAL FREQUENCIES [Hz]
. 7 [Hz] 23 ]
i- Mode ki theoretical Ji7 [Hz] FE calculated Cantilever and Coupled System Coupled System Coupled System
Accelerometer (Actuator Mode) (Actuator Mode) (Sensor Mode)
1 3.5156 9.740 9.746 3
=]
=)
2 22.033 61.04 61.06 .
- FEM (,'of;ilxlr()d Theoretical Theoretical Value
3 61.701 170.9 170.9 Computed Value Vallue Value
4 120.91 334.9 334.8
1 7.45 7.64 7.66 7.67
5 199.85 553.6 553.2
2 50.94 51.19 51.89 51.90
6 298.56 827.0 826.0
3 148.59 149.41 150.03 150.04
4 297.58 299.17 298.96 299.13
where the superscript 23 indicates that .the oscillations occur in 5 49727 505.53 49972 500.14
the x5 —x3 plane, m. and /. are the cantilever’s mass and length,
. . . . 6 744.41 766.73 752.54 753.06
and J; the cantilever moment of inertia along z;. By substi-

tuting the values of the constant k; related to the first six flex-
ural modes, it turns out that the calculated frequencies fZ* are
in perfect agreement with the values computed through the FE
model, as shown in Table II. Fig. 5 shows the shape functions
corresponding to the first and sixth flexural oscillating mode.
Since (12) is derived from the 3-D expressions (1)—(3), it al-
lows calculation of the resonance frequencies corresponding to
torsional modes. The first torsional frequency calculated for the
metallic cantilever is 78 Hz, and this value is between the third
and fourth flexural frequencies shown in Table II.

Finally, we consider the coupled system, including the ac-
celerometer present in the experimental apparatus (cf. Fig. 1).
For the construction of the model, the following assumptions
are made.

1) There exists a plane stress state within the two laminas,
which can be realized by using plane stress elements
in the numerical simulations. In such a way, all the
problem’s quantities are constrained to possess only
components parallel to the o — x3 plane (cf. Fig. 5).

2) The upper and lower surfaces of the piezoelectric lamina
are equipotential. In particular, the nodes of the lower sur-
face have potential equal to zero and those of the upper
basis, the same voltage magnitude. In the real device, such
a condition is imposed by means of the electrodes.

3) The two laminas are perfectly glued; the system is mod-
eled as a unique body made out of two different materials,
aluminum and piezoelectric transducer (PZT), having dif-
ferent properties.

The accelerometer is modeled as a punctual mass kinemati-
cally constrained to the upper end of the cantilever’s free basis.
Such a mass is positioned at a distance of 1 cm from the center
of mass of the beam-section. Mesh is realized for the sake of
having the largest number of elements correspond with the in-
terface of the piezoelectric plate and along the thickness of the
two laminas, thus increasing the accuracy of the assessment of
the quantities within the piezo and at the interface between the
two plates.

Thereafter, natural frequencies are calculated with the pres-
ence of a concentrated mass, constituting of the accelerometer,
whose weight is 0.02 kg. In such a way, the total mass of the
system increases producing a decrease in the frequency values,
as follows directly from (13). In Table III (second column), the

values of natural frequencies corresponding to the system made
out of the cantilever and accelerometer are presented. In the
third column, the computed frequency values when the piezo-
electric plate is included in the system are shown. In this last
case, the cantilever’s flexural strength E A J; is increased be-
cause of the gluing of the piezoelectric lamina, hence an increase
of the system’s frequency values, respect of those in column
two, follows.
The stiffening effect induced by the coupling of the cantilever
with the piezoelectric is of two types.:
1) Mechanical: the gluing of the piezolamina produces an
increase in the cross-sectional area and, consequently, in
its moment of inertia J;.
2) Electrical: as a consequence of the electromechanical cou-
pling, the piezoelectric plate’s effective elastic tensor c&*
in the sensor mode (electrodes left open) is:

11 = lle® + e(e%) 7 e > || (14)

If one shorts the electrodes of the piezotransducer, the stiffening
effect due to the electromechanical coupling is absent (since ¢
and FE are zero). Such a condition corresponds to the actuator
mode (electrodes shorted) or when using a charge or current
readout instead of a voltage readout. The frequencies presented
in the third column of Table III are obtained when the actuator
mode is working. During the extraction of the natural frequen-
cies, only the mechanical stiffening has been taken into account,
since the adopted FE code ignores the constraints on electric po-
tentials for this kind of operation; the computed values, there-
fore, correspond to the condition of the shorted piezoelectric
lamina’s electrodes. In the fifth column of Table III, the frequen-
cies of the coupled system, corresponding to the piezo working
as sensor, are shown in order to highlight the previous theoret-
ical considerations. Such values have been borrowed from [11].
From Table III, a good agreement between computed and ex-
perimental values is evident.

IV. NUMERICAL RESULTS

We have determined numerically the frequency response of
the electromechanical system in terms of displacement and ac-
celeration of the cantilever free end, corresponding to an electric



DALESSANDRO AND ROSATO: FE ANALYSIS OF THE FREQUENCY RESPONSE OF A METALLIC CANTILEVER

[mm] 03 :

T T T T T T T T T T

1

0.25

0.2 + 4

0.15 4 A

0.1 -

0.05 4 b

e,
T T T

500 1000

1 50

-vv-unl T T T |

100 200

Fig. 6. Displacement magnitude of the cantilever free end corresponding to
oscillations induced by the piezoactuator, in the frequency range [0-1000] Hz.
Frequency responses of the proposed 3-D model (bold line), experimental values
(points) and from the available 1-D analytic model (thin line, after [11]) are
compared.
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Fig. 7. Acceleration magnitude of the cantilever free end corresponding to
oscillations induced by the piezoactuator, in the frequency range [0-60] Hz.
Frequency responses of the proposed 3-D model (bold line), experimental values
(points) and from the available 1-D analytic model (thin line, after [11]) are
compared.

input represented by the alternative voltage applied across the
piezoelectric plate (actuator mode). We have also computed the
frequency response in terms of voltage across the electrodes of
the piezoelectric plate corresponding to alternative oscillations
induced by an oscillator (sensor mode). Although the extraction
of the natural frequencies requires a knowledge of the mass and
stiffness only, the dynamic analysis needs to take into account
the dissipative forces as well as those of inertia by introducing
damping coefficients. Thus, in order to compute the system fre-
quency response obtained by a direct integration of the differ-
ential equations presented in Section II, global damping coef-
ficients have been used in the model, and they have been de-
termined through a least-square interpolation [25] of the modal
damping coefficients available from the experiment.

Figs. 6 and 7 show, respectively, the frequency behavior of
the displacement of the free end in the frequency band [0—1000]
Hz and of the acceleration of the same point, in the band [0-60]
Hz. In the figures, points indicate the experimental values while
the bold and thin lines are calculated by the proposed 3-D FEM
model and by the 1-D model [11], respectively. The frequency
behavior of the voltage across the electrodes is depicted in
Figs. 8 and 9, where the bands [0-30] Hz in linear scale and
[30-1000] Hz in semilogarithmic scale are represented.
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Fig. 8. Voltage magnitude across the piezoelectric sensor corresponding to
oscillations induced in the cantilever beam by the oscillator, in the frequency
range [0-30] Hz. Frequency responses of the proposed 3-D model (bold line),
experimental values (points) and from the available 1-D analytic model (thin
line, after [11]) are compared.

[Vl

1.2

0.8

0.6

0.4

0.2

T I R A R I A B B

0 i A e :
50 100

e . [Hz]
500 1000

3
=]

Fig. 9. Voltage magnitude across the piezoelectric sensor corresponding to
oscillations induced in the cantilever beam by the oscillator, in the frequency
range [30-1000] Hz. Frequency responses of the proposed 3-D model (bold
line), experimental values (points) and from the available 1-D analytic model
(thin line, after [11]) are compared.

The comparison with the available frequency plots [11] repre-
senting the experimental response (points) is shown: it is evident
that there is agreement between the numerical results obtained
by the FE model and the experimental response. The results pre-
sented have been obtained with a rectangular nonuniform grid
of eight-node linear elements, which makes it possible to obtain
the same quality with fewer elements (and, hence, smaller com-
putational cost) than the others. In particular, the mesh has been
taken very close in the portion of the metallic cantilever that is
bonded to the piezotransducer; in such a way, the survey about
the interfacial quantities, which is the goal of this work, becomes
more accurate. In Figs. 11 and 12, the numerical computation
of tangential stresses at the interface between the metallic can-
tilever and the piezotransducer are shown. The knowledge of
these stress values is essential to correctly bond the piezo and
to grant the device tightness during the ordinary operation in
vibration. We have calculated the most unfavorable values of
interfacial stresses occurring at the first resonance peak, which
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Fig. 10. FE simulation (a) shows the gathering of the tangential stresses 715 at the corner of the piezoplate, which becomes the most stressed part. (b) Particular

of the portion of the cantilever on which the piezotransducer is glued.
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Fig. 11. Peak values of the tangential stresses 71> at the piezobeam interface
for the actuator mode.

falls into frequencies of about 8 Hz. Fig. 10(b) shows the portion
of the electromechanical system where the piezoelectric plate
is glued; the particular of the left end shows the gathering of
stresses at the piezoelectric lamina’s corner. Tangential stresses
712 (along the x5 direction) are diagrammed in Fig. 11, where
the values represented are those assumed to correspond to the
central node of each element in which the interface has been
divided.
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Fig. 12.  Amplitude of the tangential stresses 71> at the piezobeam interface
for the sensor mode in semilogaritmic scale.

This diagram represents stresses 712 when an alternative
voltage is applied to the piezotransducer (actuator mode).
Fig. 12 represents stresses 712 when vibrations are induced by
the shaker that makes the cantilever oscillate (sensor mode). In
Fig. 13, the calculated pointwise values of the electric potential
within the piezoelectric plate working as a sensor are shown.
The calculation is made in correspondence to the first resonance
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Pointwise values of the electric potential within the piezoelectric plate; the legend indicates the potential’s value (EPOT) within the materials. The field

is not uniform at the left end of the piezo, since the strains are not constant and they assume the largest value in correspondence to those points.

peak, which falls into frequencies of about 8 Hz. The potential
rises linearly along the height of the piezoelectric transducer,
until it reaches a null value at the interface with and within the
host cantilever beam. The field, however, is not uniform at the
left end of the piezo, since the strains are not constant and they
assume the largest value in correspondence to those points.

V. CONCLUSION

In this paper, we have numerically studied the frequency re-
sponse of an electromechanical system made of a metallic can-
tilever hosting piezoelectric lamina working in both sensor and
actuator modes. The results are in agreement with available ex-
periments [11] and, thus, confirm the correctness and validity of
our FE model. The issues shown and discussed in this paper pro-
vide the general means to realize the 3-D numerical model of an
electromechanical system. Relations characterizing dielectrics,
piezoelectric plates, and continuum solids have been reexam-
ined, explaining the particular structure of matrices. In order
to calculate the interfacial mechanical stresses, we have used
a 3-D model that is able to take into account the coupling be-
tween longitudinal, flexural, and torsional modes, resulting in a
more accurate reproduction of the physical system. By contrast,
a uniaxial model is less precise and only allows the determina-
tion of the global stresses, which is insufficient for studying the
debonding problem or for a pointwise numerical assessment of
the quantities of interest.

In the frequency analysis, we have observed that the system
response, in particular for the first resonance peaks, occurs in a
frequency band affecting only the metallic cantilever dynamics.
On the other hand, in the analysis of the piezoelectric plate sub-
mitted to alternating fields, we have shown how the electric reso-
nance frequencies (in the kilohertz range) are much greater than
those of interest for the studied system (of some tens of hertz).
We conclude that, if the plates were of the same magnitude and
on a miniaturized scale, interactions between electrical and me-
chanical quantities would be stronger, and electrical and me-
chanical resonances would occur in the same band.

Furthermore, knowledge of very unfavorable resonance
peaks in the ordinary working band of the system is crucial for
the correct design of the system and to grant the efficiency of

the control and measurement apparatus that uses such electro-
mechanical devices. The preliminary tests on the partitioned
system were important for the useful conclusion of this work;
the initial case study was split into subproblems that are easier
to analyze and to test with theoretical and experimental evi-
dence, thereby achieving correct results. The present survey
will allow us to synthesize a vibration active control system for
the metallic cantilever; further work will address this issue.
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