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Abstract. For designing reliable power electronic systems it is 
essential to understand basic thermal issues like the stationary 
and transient relation of the power semiconductor losses the 
junction temperature and the application of thermal equivalent 
circuits. Also, thermal properties are of special importance in 
connection with further increasing the compactness of power 
converter systems. The aim of this paper is to give an 
introduction into the basic theory of heat energy conduction 
and thermal design which should serve as an addition to the 
Java applets compiled in a the iPES-Thermal, a module of the 
interactive educational software iPES which is freely available 
at www.ipes.ethz.ch and employed at the ETH Zurich for 
supporting an introductory course on power electronics.  
 
1 Introduction 
 

1.1 Thermal Problems in Power Electronics 
 

In lectures on fundamentals of power electronics thermal 
design is often neglected because the focus is traditionally on 
circuits, topologies and control. Therefore, students often do 
not have a clear understanding of the importance of a proper 
thermal design of power electronic systems. 
 

This paper should compile lecture material providing an 
introduction into the basics of thermal issues relevant to power 
electronics. The paper is complimentary to Java applets of the 
interactive educational software iPES (Interactive Power 
Electronics Seminar) which also will be discussed in this 
paper.  
 
1.2 Interactive Power Electronics Seminar (iPES)  
 

The Interactive Power Electronics Seminar (iPES) [1], [2] 
available at www.ipes.ethz.ch at no costs is an effort to make 
educational software interactive by employing Java applets. 
Different power electronic circuits are shown with animated 
current-flow in dependency of operating parameters like load-
resistance or input-voltage. The user can click with the mouse 
directly into the circuit elements and signal for changing 
parameters, and the corresponding changes of the time-
behavior or other diagrams are shown immediately. The focus 
of iPES is not on simulation but on interactive animation. 
Currently available educational modules are “iPES-Cicuits”, 
“iPES-Advanced Circuits” and “iPES-Electromag-netics” and 
“iPES-Thermal” which will be in the focus in the following. 

2 Heat Conduction  
 

2.1 Heat Conduction in Power Electronic Systems  
 

In general there are three basic heat transfer mechanisms: heat 
conduction, convection and radiation [3].  
 

In a medium the heat transfer is by lattice oscillations and 
electrons (for conductive materials). This mechanism, 
denominated as heat conduction is of paramount importance in 
power electronic applications, and will be discussed in detail in 
this paper.  
 

Power losses occurring inside a power semiconductor are 
finally conducted to a heat sink surface, i.e. a convective 
interface. In natural convection the heat is conducted to the 
surrounding medium via a thin boundary layer. There, the heat 
energy does change the adjacent medium density where the 
created buoyancy causes the medium to flow. For significantly 
increasing this mechanism of heat transfer the mass flow could 
be created by fans, i.e. forced convection could be employed. 
 

According to the Stefan-Boltzmann law an object does emit 
heat power in the form of electromagnetic waves dependent on 
its temperature, the ambient temperature and the surface 
emissivity. Heat transfer via radiation also works if there is no 
media surrounding the heat sink and therefore is the only 
relevant heat transfer mechanism e.g. for space applications.  
 
2.2 Mathematical Model  
 

In this section a mathematical model of heat conduction for 
calculating stationary and dynamic temperature distributions 
inside power semi-conductors and heat sinks will be derived. 
For simplification a one-dimensional structure (e.g. an isolated 
rectangular rod, cf. Fig.1, top-left) of homogenous material 
will be analyzed. The results gained could be expanded easily 
to three dimensions (see section 2.5).   
According to the one-dimensional consideration the time-
dependent temperature T is equally distributed over a cross-
section A (called Isotherm) of the rod at a position x considered 
and the heat energy flow density q [W/m2] is proportional to 
the negative local temperature gradient   

x
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The proportional factor called thermal conductivity λth 
[W/(K·m)] is a material property. Generally, heat flow density 



and temperature gradient are vectors, but for the one-
dimensional model the direction of the heat flow is aligned 
with the x-axis and therefore scalar values could be used.  
 

       
 
Fig.1: Interactive applet of iPES-Thermal for demonstrating the time-
behavior and the position-dependency (profile) of the temperature for 
one-dimensional heat energy conduction as described by Eq.(4). The 
on-time of thermal input power pulse can be set with the mouse. 
Furthermore, a position x and an instant t1 in time could be defined for 
investigating the temperature time behavior and profile. 
  
For a finite volume element δV=A·δx located at coordinate x 
the thermal power p(x) flowing into the volume element is 
partially heating up δV and partially transferred into the 
subsequent volume element 
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where δm [kg] denominates the mass of the volume element 
δV, ρ [kg/m3] specifies the material density, and c [Ws/(K·kg)] 
is the specific thermal capacitance. With a first-order Taylor-
approximation of p(x+δx) in (2) there results  
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Considering (1) this finally results in the general heat 
conduction (wave) equation which provides the basis for all 
further calculations  
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2.3 Electric Equivalent Circuit  
 

For calculating stationary and dynamic temperature 
distributions inside power semiconductors and heat sinks, 
Eq.(4) has to be solved. This could be performed by 
mathematical concepts like the finite difference method 
(discussed in section 2.5). Alternatively, an electric equivalent 
circuit of the thermal system can be defined where concepts 
well known by electrical engineers could be employed for 
calculating the temperature time behavior and profile.  

For transferring the thermal problem into an equivalent electric 
circuit problem we refer to an electric transmission line 
described by the partial differential equation   
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For (ideal) transmission lines with no inductance (Lel’=0) and 
ideal isolation in between the two single lines (Gel’=0) we 
receive    
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where Cel’ [F/m] is the capacitance, and Rel’ [Ω/m] the 
resistance per unit length. According to the mathematical 
analogy of Eqs.(4) and (6) the solution  of (4) can be directly 
derived from (6). 
 

Injecting heat power P0 at x=0 and using (1), we have for 
stationary problems, i.e. for ∂T/∂t=0, a linear temperature 
profile and/or 
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where T0 = T(x=0) and the given temperature at the end of the 
rod is Tl = T(x=l). According to (6) the temperature T has to be 
interpreted as voltage u, and the injected heat power P0=q0·A 
could be interpreted as electric current i. With reference to 
Eq.(7) we correspondingly define a thermal resistance Rth 
[K/W]  of the homogenous  one-dimensional isolated rod of 
the length l  
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where  
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is valid. Based on the general relation for an electric 
capacitance  
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we furthermore define a thermal capacitance Cth [Ws/K]  
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of the homogenous rod, where considering Eqs.(4), (6),(8), and 
(11) 
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and/or  
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is valid. There, R´th and C´th denominate the thermal resistance 
and thermal capacitance per unit length of the rod. The analogy 
of the heat energy conduction problem to the electric 
transmission line problem now is immediately obvious (cf. 
Eqs.(4) and (13)). 



2.4 Accuracy of the Equivalent Circuit Model 
 

Using an electric equivalent circuit of the thermal system is 
especially convenient for analyzing multi-layer structures 
being characteristic for power semiconductors. There, for each 
(thin) layer i in a first approximation only one-dimensional 
heat conduction has to be considered. The equivalent circuit 
therefore directly reflects the layer structure where the material 
properties of each layer are considered by proper R´th,i and 
C´th,i, values (cf. Eqs.(8) and (12)). The solution of the electric 
problem then could be performed analytically or by a 
numerical circuit simulator (cf. section 2.6). 
 
2.4.1 Stationary Behavior 
 

For stationary problems the thermal capacitances Cth,i can be 
omitted and each layer (each one-dimensional rod) can be 
described by a single thermal resistance Rth,i corresponding to a 
linear temperature change inside the layer (see Eq.(7)). 
 

     
 

Fig.2: Equivalent electric circuit of three-layer one-dimensional heat 
energy conduction. One layer is shown below the electric equivalent 
circuit.  
 
The temperatures (and/or voltages) TJ, T1, T2 at the equivalent 
circuit nodes represent the temperatures at the boundaries of 
different layers, the temperature Ta is the ambient temperature. 
The thermal power PV (electric current) and/or the 
semiconductor power loss is injected into the top layer. 
Knowing the ambient temperature Ta one can easily calculate 
the power semiconductor junction temperature TJ, i.e. the 
temperature on top of the first layer.   
 

In case the area where the power losses are applied is smaller 
than the cross section of the heat conducting material heat 
spreading does occur. There, the heat conducting cross section 
does increase in the direction of the heat propagation. For 
improving the accuracy of the calculation this can be taken into 
account by correction factors as discussed in [6].  
 
2.4.2 Transient Behavior 
 

For dynamic problems each layer has to be subdivided into 
several RthCth-cells in order to accurately represent the heat 
conduction mechanism being dependent on position and time 
(cf. Eq.(13)). Therefore, the resulting electric equivalent circuit 
of each layer comprises a series connection of these cell 
structures as shown in Fig.3(a) for five cells and in Fig.3(b) for 
only two cells.  
 
It is obvious that with increasing number of cells the accuracy 
of the model will improve. On the other hand, the calculation 

effort (computation time) does increase, accordingly. 
Therefore, it is up to the engineer to make a decision between 
necessary, i.e. problem-specific accuracy and problem-solving 
effort.  
 

The Java applet shown in Fig.3 allows to increase and decrease 
the number of cells employed for the modeling of a layer. A 
comparison against the exact solution provides an immediate 
impression of the modeling accuracy. Furthermore, the scaling 
of the time-behavior of the rod input temperature can be 
switched between logarithmic and linear (e.g. Fig.3 shows 
time-behavior in log-log scale) what does allow to evaluate the 
model accuracy over several decades in time. 
 

(a)   

(b)  
 

Fig.3: Interactive applet of iPES-Thermal for showing the 
dependency of the modeling accuracy of the electric equivalent circuit 
of the heat energy conduction in a layer of a multiple-layer power 
semiconductor in dependency on cell number and cell type. Cells can 
be added and subtracted with clicking the mouse, also the cell-type 
can be selected with the mouse.  
 
Employing more than three cells already gives sufficiently 
accurate results. To further significantly increase the accuracy 
of the model   each RthCth–cell (highlighted in Fig.3(b), 
bottom-left) could be changed into a T-type structure, 
½RthCth½Rth, highlighted in Fig.3(a), bottom-left. 
Alternatively, also a π-type cell structure, ½Rth-Cth-½Rth, could 
be selected.  



 2.5 Finite Difference Method and RthCth-Equivalent 
Circuits for 2D and 3D Problems  
 

For a three-dimensional problem we have to extend Eq.(4) to 
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As the calculation time has to be minimized for animated 
simulation in order to give the user the impression of an 
immediate response to parameter changes, finite difference 
methods [5] are employed in iPES-Thermal for solving 
Eq.(14). As will be shown in the following this results in 
mathematically identical relations as for employing the electric 
equivalent circuit discussed in section 2.3. For the sake of 
clearness we will limit our considerations to the stationary 
temperature distribution, i.e. the thermal capacitances will be 
omitted.  
 
2.5.1 Finite Difference Method 
 

A temperature distribution in general is a continuous scalar 
function of position and time. For numerical calculation 
temperature values have to be defined at discrete positions and 
at discrete time instances.  
 

      
 

Fig.4: Partition of a geometry divided into (n x m)= 12 rectangular-
shaped cells for calculating the two-dimensional temperature-
distribution based on the finite difference method. We assume a 
thermal power PV,23 to be injected at cell (23).  
 
For the finite difference method the geometry is divided into 
rectangular cells and the unknown field quantities 
(temperatures) are referred to the center of these cells. This is 
shown in Fig.4 for a two-dimensional temperature field, but 
can easily be extended into three dimensions. For calculating 
the temperature T23 we have to take the temperatures T22, T33, 
T24, T13 of the neighboring elements into consideration. All five 
relevant elements are highlighted in Fig.4. The first and second 
deviation of the temperature can now be calculated using linear 
approximations 
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Substituting Eqs.(17) and (20) into (14), a discretization of the 
position is introduced  but the temperature behavior is still 
continuous in time.  
 

Considering a discretization in time as shown in Fig.5 and 
considering e.g. the position (y,x)=(y2,x3) and/or cell (2,3) we 
have temperature time-derivation to be introduced in the right 
hand side of Eq.(14) 
 

t
TT

t
T kk

xxyy ∆
−

=
∂
∂ −

==

)1(
23

)(
23

3,2

            (21) 

 

where T23
(k) denotes the temperature value at time t= k.∆ t (∆ t 

is the simulation time step) and  
T23

(k-1)=T23(t=(k-1).∆ t).  
 

As can be clearly seen from Fig.5, the slope calculated in 
Eq.(21) should for best approximation  be related to  average 
value  
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Therefore, we substitute for the temperature values in 
Eqs.(15)-(20) being still continuous in time 
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There, one has to note, that the resulting set of equations will 
again only contain temperature values Tyx

(ξ), ξ=…(k-2),(k-1),k 
and/or cause low computational effort. However, due to 
Eq.(23) the discrete time-step ∆ t is effectively cut in half what 
does significantly increase the  numerical stability and the 
accuracy of the algorithm.   
 
 

         
 

Fig.5: Time behaviour of temperature Tyx approximated for numerical 
simulation by temperature values at discrete time instances.  



If the cells are defined to be of quadratic shape (Fig.4)  
 

lyx ∆=∆=∆              (24) 
there results a linear equation for the temperature of each cell 
of Fig.4  
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Injecting thermal power PV [W] into geometric cells is 
described by a boundary condition based on Eq.(7) as  
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This boundary condition has to be considered in Eq.(25) by 
adding the term defined in Eq.(28) as  
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In the following it will be shown how to set up the linear 
equation system for the numerical calculation of the 
temperature distribution over the whole geometry.  
 

As only the stationary conditions are considered in the 
following Eq.(29) is reduced to 
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As Fig.4 shows, a geometry subdivided into (mxn)= (3x4) cells 
results in (n.m)=(3·4)=12 unknown temperature values. 
Defining equations systematically for each cell as described in 
Eq.(30) we finally get a matrix equation  
 

The 7th row of the (12x12)-matrix A of Eq.(31), corresponding 
with temperature T23, is defined as  
 

A (j=7) = (0; 0; -1; 0; 0; -1; 4; -1; 0; 0; -1; 0)          (32) 
 

(the matrix index (ji) defines the position of the element within 
the (12x12)-matrix; j=1…12 indicating the row, i=1…12 is the 
column index) if the vector of unknown temperatures is 
defined as  
 

TT =(T11;T12;T13;T14;T21;T22;T23;T24;T31;T32;T33; T34) .         (33) 
 

The diagonal of the coefficient matrix in Eq.(31) is comprised 
by “+4” entries. Each geometric cell has got four direct 
neighbors contributing four “-1” entries in each row of the 
matrix. This is shown for cell (23) with its neighboring cells 
(13),(22),(24),(33) in Eqs.(32) and (33). All other elements of 
the row are zero resulting in a sparse matrix. On the other 
hand, for example, cell (13) is located at the boundary of the 
geometric structure in Fig.4 and therefore does have only three 
immediate neighbours (12),(14),(23) contributing “-1” entries 
in the 3rd row of the matrix. The temperature of the cell 
neighbouring in the positive x-direction is equal to the known 
ambient temperature Ta; therefore this cell has not been given a 
coordinate and does contribute an entry Ta in the right-hand 
side (disturbance) vector of Eq.(31).  
 

According to Eq.(30) thermal power injected into a certain cell 
results in an entry PV,yx·Rth into the right-hand disturbance 
vector of Eq.(31) in the row of this cell.  
 

       
 

Fig.6: Electric equivalent circuit for the calculation of a two-
dimensional stationary temperature distribution for given ambient 
temperature Ta=const and given power losses, i.e. injecting current 
PV,23  at cell (23).  
 
2.5.2 RthCth Equivalent Circuits 
 

For calculating a two- (or three)-dimensional stationary 
temperature distribution it is also possible to refer to an electric 
equivalent circuit as introduced in section 2.3 for one-
dimensional heat energy conduction. As in section 2.5.1 we 
also will consider only the stationary temperature distribution 
in the following and/or omit the thermal capacitances. The 
geometry is again divided into cells (cf. Fig.6) which directly 
correspond to the partitioning shown in Fig.4. The power PV,23 
is injected into the cell numbered (23) by a current source. 
 

For the network in Fig.6 we can directly have 
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Comparing Eq.(37) to Eq.(30) it is obvious that both methods, 
i.e. the finite difference method and the electric equivalent 
circuit do result in an identical set of equations and are 
therefore mathematically equivalent.  
 
2.6 Coupling of Electric Power Circuit Simulation and 
Thermal Simulation 
 

Software packages available for the simulation of electric 
circuits do set up internally an equation system for a circuit 
considered and do provide the time-behavior of voltages of all 
nodes and currents through all components.  
 

As the temperature often takes significant influence on the 
properties of a power electronic circuit it is desirable, e.g. to 
calculate the power semiconductor junction temperatures and 
to continuously update the power semiconductor models 
employed in the circuit simulation. 
 

      
 

Fig.7: Simultaneous coupling of the simulation of the power circuit 
and of the thermal electric equivalent circuit   shown for a single 
diode rectifier.  
 
This can be achieved by using the electric equivalent circuits 
of the thermal properties of the components which could be 
directly integrated into the circuit simulation. The basic 
principle is shown in Fig.7 for a single diode rectifier circuit. 
There, the diode power losses PV are impressed by a controlled 
current source, where PV is the product of the diode voltage uD 
and current iD. The thermal electric equivalent circuit is 
defined according to the transient thermal impedance provided 
in the diode data sheet (cf. section 3). The ambient temperature 
Ta is defined by a DC-voltage source. The semiconductor 
junction temperature TJ does take influence on the conduction 
voltage drop UF=UF(TJ) and/or on the semiconductor power 
losses.    
 

For the simulator the thermal equivalent circuit is just another 
electric circuit to be analyzed. Therefore, no software of 
special type is required for calculating the temperature stress TJ 
(interpreted as a voltage in the model). More information on 
this simple and effective concept can be found e.g. in [4] and 
[6].  

3 Transient Thermal Impedance 
 

The stresses on the power semiconductors employed in power 
converters are in general varying over time according to 
changing load conditions, alternating input or output 
voltage/current and operating parameter dependent switching 
frequency. Therefore, the instantaneous power losses could 
show a significant deviation form the average value.  
 

Accordingly, the calculation of the maximum power 
semiconductor junction temperature which is to a large extent 
determining the failure-rate and/or reliability has to be 
performed based on a dynamic thermal model of the system 
like described in section 2.2. There, instead of solving Eq.(4) 
the analysis could be based on the transient thermal impedance 
Zth(t) which is given in the power semiconductor data sheet and 
does show the time behavior of the junction temperature TJ=TO 
in reaction to a step-like change  of the semiconductor power 
losses.   
 
3.1 Definition of Transient Thermal Impedance 
 

In order to show the physical background of the definition of 
Zth(t), we will analytically calculate the transient thermal 
impedance for one-dimensional heat conduction in an isolated 
rod of infinite length  in the following. 
 

For solving the differential equation (13) analytically, we apply 
the Laplace transformation  
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(where the Laplace variable s is only a parameter) resulting in 
a temperature profile 
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where a power p0(t) being injected at x=0  
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is assumed. In Eq.(42) the surface (junction) temperature is of 
most interest 
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Considering the electric equivalent circuit of the thermal 
system we now could define a circuit input impedance 
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which, however must not be confused with the transient 
thermal impedance Zth(t).  
 

For the calculation of Zth(t) we assume for p0(t) a step-like time 
behavior, p0(t)=P0, and  therefore have in the  Laplace domain 
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With reference to Eq.(45) the resulting transient behavior of 
the temperature is 
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and in the time domain  
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For characterizing the transient thermal behavior we now 
define the transient thermal impedance as 
 

0

0 )(
)(

P
tTtZth =  ,              (49) 

 

which physically represents the step-response of the junction 
temperature T0 normalized to the thermal input power P0. In 
the case of one-dimensional heat conduction this results in  
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where R´th and C´th could be replaced by the absolute values Rth 
and Cth of a section of the rod. 
  
3.2 Simple Transient Thermal Models   
 

Based on Eq.(49) e.g. the time-behavior of the temperature 
drop Tl occurring across a heat conducting layer of stationary 
thermal resistance Rth,l, e.g. the isolating layer of a power 
semiconductor  can be approximated without solving Eq.(13) 
analytically or numerically,  
 

Showing Eq.(48) in log-log scaling   
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it is immediately obvious that the slope of the  temperature 
change over time for a layer of infinite thickness is 10dB/dec. 
We now could directly define an approximation of the 
normalized time-behavior of T0 and/or of the transient thermal 
impedance considering that T0 in the stationary case will 
assume a value Tl = P0 Rth,l, if the rod is not of infinite but of 
finite length l  
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(cf. Fig.8)  where  
 2

,,, 4
lcCR

th
lthlthlth λ

ρ=π=τ              (53) 

has to be considered as the thermal time-constant  of the layer. 
For t < τth the temperature T0 does exhibit a behavior being 
characteristic for a layer of infinite thickness, for t > τth the 

layer could be considered as having reached a stationary 
thermal condition which is characterized by a constant gradient 
of the temperature and/or by the thermal resistance Rth,l. 
 

       
 

Fig. 8: Interactive applet of iPES-Thermal for showing the exact 
transient thermal impedance of a multiple-layer thermal structure   in 
comparison to the asymptotic solution according to Eqs.(52) and (54). 
The thickness of the layers can be changed with the mouse.   
 

As in power semiconductors the power losses do occur in a 
finite volume inside the silicon die showing a thermal 
capacitance Cth,j we have to consider in addition to Eq.(52)  a 
thermal impedance  
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In log-log scaling the slope of the temperature change over 
time resulting for a power pulse P0 then is 20dB/dec.   
 

For a detailed discussion of combining Eq.(52) and Eq.(54) to 
the asymptotic approximation of  the transient thermal 
impedance of a multiple-layer thermal structure (cf. Fig.8) we 
would like to refer to [7] for the sake of brevity.  
 

       
 

Fig.9: Interactive applet of iPES-Thermal for showing the transient 
thermal impedance of a power semiconductor and the related time-
behavior of the junction temperature for applying a periodic power 
loss pulse of duty-cycle D=[0…1]. There, the transient thermal 
impedance is defined based on the peak value of the normalized 
junction temperature occurring within the power pulse duration tP. 
The operating point (D, tP) can be changed with the mouse.   



3.3 Zth(t) Specification in Data Sheets 
 

In Fig.9, left-hand side, a Java applet of iPES-Thermal shows 
the transient thermal impedance of a power semiconductor in 
log-log scale as typically depicted in a data sheet. The width tP 
of a rectangular periodic thermal input power pulse with a 
normalized amplitude of 1.0W is given on the horizontal axis; 
the time-behavior corresponding to a selected pulse duty cycle 
D and pulse-width tP is shown on right-hand side. The 
equivalent thermal circuit model is shown bottom-right.    
 
3.4 Cauer-Type and Foster-Type Electric Equivalent 
Circuits  
 

In case Zth(t) of a power semiconductor is known from a data 
sheet or measurement, the Parameters Rth,i, Cth,i of the thermal 
system can be identified in analogy to the identification of a 
dynamic system in control engineering  based on a step-
response [4]. The different time constants then could easily be 
combined in a Foster-type electric equivalent circuit as shown 
in Fig.10(b). The simplicity of this procedure makes the 
Foster-type circuit an attractive choice for power 
semiconductor manufacturers (cf. Fig.9). However, the Foster-
type circuit only does correctly describe the junction 
temperature time behavior and does not provide information on 
the inner temperature distribution. If, for example, a pulse of 
thermal power is injected at the input the temperature at all 
internal nodes will change immediately due to the capacitors 
Cth1, Cth2, Cth3 forming a series-connection between the input- 
and the output-side. This is clearly different from reality, 
where the propagation of the temperature increase from the 
layer surface is with a time-delay (cf. Eq.(52)). Also, the 
thermal energy stored inside a layer volume is proportional to 
the absolute temperature as modelled by the Cauer-type circuit 
(cf. Fig.9(a)), but is shown to be proportional to the 
temperature differences of the nodes for the Foster-type circuit. 
 

Therefore, the Foster-type circuit is restricted to the specific 
application given in the data sheet and cannot be extended 
easily, i.e. all parameters would have to be changed each time 
the thermal system is extended. In contrast the Cauer-type 
circuit does describes the physical properties correctly and 
does allow to add models of further layers by series 
connection.  
 

    
 
Fig.10: (a) Cauer-type and (b) Foster-type electric equivalent circuit a 
one-dimensional heat conducting layer.  

4 Conclusions  
 

The educational module iPES-Thermal, being part of the 
Interactive Power Electronics Seminar (available at no costs at 
www.ipes.ethz.ch), does comprise Java applets on basics of 
thermal issues of power electronic system. This paper presents 
in tutorial style an abridged version of the accompanying 
lecture notes. A comprehensive version of the text will be 
published in near future in a textbook on Lectures on 
Fundamentals of Power Electronics.  
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