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Magnetics 

Committee 

■  AC Power Loss Measurements 

■      Technology Demonstration  

■  Technical Issues 

■  AC Power Loss Modeling  

Sessions 
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  Converter Performance Indicators   
  Design Space / Performance Space 

 
Introduction 



►  Power Electronics Converter 
      Performance Indicators 

─  Power Density       [kW/dm3] 
─  Power per Unit Weight    [kW/kg] 
─  Relative Costs    [kW/$] 
─  Relative Losses  [%] 
─  Failure Rate            [h-1] 

[kgFe    /kW]  
[kgCu    /kW] 
[kgAl         /kW] 
[cm2

Si     /kW] 

►
 

► 

Environmental Impact… 
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PO      = 3.2kW 
UN = 230V±10% 
UO   = 400V 
 
fP  = 450kHz ± 50kHz 

η = 95.8% @ ρ = 5.5 kW/dm3 

► Performance Limits (1) 
 

■   Example of Highly-Compact 1-Ф PFC Rectifier 
■   Two Interleaved 1.6kW Systems 
 

  High Power Density  @ Low Efficiency 
  Trade-Off Between Power Density and Efficiency  

CoolMOS   
SiC Diodes   
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PO      = 3.2kW 
UN = 230V±10% 
UO   = 365V 
 
fP  = 33kHz ± 3kHz 

η = 99.2% @ ρ = 1.1 kW/dm3 

 

■   Example of Highly-Efficient 1-Ф PFC Rectifier 
■       Two Interleaved 1.6kW Systems 

CoolMOS   
SiC Diodes   

  High Efficiency  @ Low Power Density 
  Trade-Off Between Power Density and Efficiency  
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► Performance Limits (2) 



  Mapping  of “Design Space” into “Performance Space” 

Performance Space 

Design Space 

► Abstraction of Power Converter Design 
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Component η-ρ-Characteristics   
Converter η-ρ-Pareto Front  

Derivation of  
η-ρ-    Performance Limit  

of Converter Systems  



► Derivation of the η-ρ-     Performance Limit  

─  Storage Capacitor 
─  Semiconductors & Heatsink 
─  Output Inductor  
─  Auxiliary Supply 

■   Key Components    

 

■   Example of DC/AC Converter System   

  Construct η   -ρ    -Characteristics of Key Components 
  Determine Feasible System Performance Space     
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►
 

►
 

► 



  Heatsink Defines a Converter Limit  ρ    ρH 

■   Semiconductor Losses are Translating into Heat Sink Volume 
■   Heatsink Characterized by Cooling System Performance Index (CSPI) 
■   Volume of Semiconductors  Neglected   

► η-ρ-     Characteristic of Power Semiconductors / Heatsink  
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     η-ρ Characteristic w/o Magnetics  
  Higher Sw. Frequ. Leads to Larger Volume  

■   Overall Power Density Lower than Lowest Individual Power Density 
■   Total Efficiency Lower than Lowest Individual Efficiency 

► η-ρ-     Characteristic of Storage + Heatsink + Auxiliary  

  

        

  


  




  

–   Example of Heat Sink  +  Storage (No Losses)   
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 Losses are Decreasing with Increasing Linear Dimensions  &  Sw. Frequency 

► η-ρ-     Characteristic of Inductor (1) 

■   Inductor Flux Swing Defined by DC Voltage & Sw. Frequ. (& Mod. Index) 

   

■   “-1”-Order Approx. of Volume-Dependency of Losses 
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►
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► η-ρ-     Characteristic of Inductor (2) 

■   Minimization of the Losses of an Inductor of a  3 kW Step-Down DC/DC Converter 
 
     –  U1= 400V / U2 = 200V 
     –  N87 Magnetic Cores  
     –  71um Litz Wire Strand Diameter (35% Fill Factor) 
     –  Consideration of HF Winding and Core Losses  
     –  Thermal Limit Acc. to Natural Convection (0.1W/cm2, 14W Total) 

  Calc. of Opt. # of Turns in Limits:  N≥1, Nmin Avoiding Sat. (incl. DC Curr.), Nmax as for Air Core 
  HF Wdg. Losses:  2D Analy. Approx.   /  HF Core Losses: iGSE  (DC Premagetization Not Consid.) 
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► η-ρ-     Characteristic of Inductor (3) 

■   Loss Minimiz. by Calculation of  Opt. # of Turns  
■   Consideration of HF Winding and Core Losses  
■   Thermal Limit Acc. To Natural Convection 
 
■   Assumption: Given Magnetic Core 

  Higher Sw. Frequ. – Lower Min. Ind. Losses  –  Overall Loss Red. Limited by Semicond. Sw. Losses 



► η-ρ-     Characteristic of Inductor (3) 
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     η-ρ Characteristic of Inductors  
  Higher Sw. Frequ. Leads to Lower Vol. 
  Allowed Losses  Defined by Cooling 

■   Overall Power Density Lower than Lowest Individual Power Density 
■   Total Efficiency Lower than Individual Efficiency 
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■   Natural Convection   



fP= 250kHz 

PO=    10 kW 
UN= 230VAC±10% 
fN  = 50Hz or 360…800Hz 
UO= 800VDC 

ρ =  10 kW/dm3 @ η =   96.2% 

■   Example of Highly-Compact 3-Ф PFC Rectifier 
■   Nat. Conv. Cooling of Inductors and EMI Filter 
■   Semiconductors Mounted on Cold Plate 

  Systems with fP= 72/250/500/1000kHz    
  Factor 10 in fP – Factor 2 in Power Density   

► Remark  – Natural Conv. Thermal Limit (1) 
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fP= 250kHz 

PO=    10 kW 
UN= 230VAC±10% 
fN  = 50Hz or 360…800Hz 
UO= 800VDC 

■   Example of Highly-Compact 3-Ф PFC Rectifier 
■   Nat. Conv. Cooling of Inductors and EMI Filter 
■   Semiconductors Mounted on Cold Plate 

  Systems with fP= 72/250/500/1000kHz    
  Factor 10 in fP – Factor 2 in Power Density   

► Remark  – Natural Conv. Thermal Limit (2) 

ρ =  10 kW/dm3 @ η =   96.2% 
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► η-ρ-     Characteristic of Inductor (4) 
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■   Natural Convection Heat Transfer Seriously Limits Allowed Inductor Losses  
■   Higher Power Density Through Explicit Inductor Heatsink 

  Heat Transfer Coefficients kL and αL Dependent on Max. Surface Temp. / Heatsink Temp.  
  Water Cooling Facilitates Extreme (Local) Power Densities    


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Primary/Secondary 

Winding

HTC

HTC Heat Sink

Fan

Core

HTC

HTC

Air Flow

Primary/Secondary 

Winding

HTC

HTC Heat Sink

Fan

Core

HTC

HTC

Air Flow

–   Natural Convection   –   Explicit Heatsink   
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► Remark  – Example for Explicit Heatsink for Magn. Component 

9   kW/dm3 (148W/in3) @ 94.5%  

PO = 5kW 
Uin= 400V 
UO = 48…56V  (300mVpp) 
Ta = 45°C 
 
fP = 120kHz   

■   Phase-Shift Full-Bridge Isolated DC/DC Converter with Current-Doubler Rectifier 
■   Heat Transfer Component (HTC) & Heatsink for Transformer Cooling   
■   Magn. Integration of Current-Doubler Inductors   
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 Low Sw. Losses / High Sw. Frequ. / Small Heatsink  / Small Ind. / High Total Power Density 
 High Sw. Losses / Low Sw. Frequ. / Large Heatsink  / Large Ind. / Low Total Power Density 

■   Combination of Storage/Heatsink/Auxiliary  &  Inductor Characteristics 
■   Sw. Frequ. Indicates Related Loss and Power Density Values  ! 

► Overall Converter η-ρ-     Characteristics 

–   Low Semiconductor Sw. Losses   –   High Semiconductor Sw. Losses   
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  Reduction of Inductor Requirement  
  Parallel Interleaving 
  Series Interleaving 



  
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► Inductor Volt-Seconds / Size  

■   Inductor Volt-Seconds are Determining the Local Flux Density Ampl. 
■   Output Inductor has to be Considered Part of the EMI Filter 
 
■   Multi-Level Converters Allow to Decrease Volt-Seconds by Factor of N2  
■   Calculation of Equivalent Noise Voltage @ Sw. Frequency  (2nd Bridge Leg w. Fund. Frequ.) 



 


 

  EMI Filter Design Can be Based on Equiv. Noise Voltage 



► Reduction of Inductor Volt-Seconds / Size  

 

 
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■   Multi-Level Characteristic   through   Series-Interleaving 
■   Multi-Level Characteristic   through   Parallel Interleaving 

  Identical Spectral Properties for Both Concepts 
  Series Interleaving Avoids Coupling Inductor of Parallel Interleaving !    



  Basic Patent on FCC Converter – Th. Meynard (1991) ! 

■  Multi-Level PWM Output Voltage – Minimizes Ind. Volume  
■  Flying Cap. Conv. – No Splitting of DC Inp. Voltage Required 
■  Low-Voltage GaN or Si Power Semiconductors 

 

 

Full-Bridge  
Topology or 

DC/|AC|Buck-Type  
+ Unfolder 

► Multi-Level Converter Approach  
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Optimal Operating Frequency 
Example of MF/MV Transformer 

 
Transformers  



► Future Direct MV Supply of 400V DC Distribution of Datacenters 
■    Reduces Losses &  Footprint / Improves Reliability & Power Quality 
■    Unidirectional Multi-Cell Solid-State Transformer (SST)  
■    AC/DC and DC/DC Stage per Cell, Cells in Input Series / Output Parallel Arrangement  

─   Conventional US 480VAC Distribution 

   Unidirectional SST  /  Direct  6.6kV AC   400V DC Conversion 

─   Facility-Level 400 VDC Distribution 

Source:               2007   
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► Example of a 166kW/20kHz SST DC/DC Converter Cell 
■   Half-Cycle DCM Series Resonant DC-DC Converter 
 
■   Medium-Voltage Side                                          2kV   
■   Low-Voltage Side            400V   
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► MF Transformer Design 

  Region I:   Sat. Limited / Min. Loss @ PC/PW= 2/β (RAC/RDC = β/α) / Region III: Prox. Loss Domin.  
  Heat Conducting Plates between Cores and on Wdg. Surface / Top/Bottom  H2O-Cooled Cold Plates 

■    DoF – Electric (# of Turns & Op. Frequ.) / Geometric / Material  (Core & Wdg) Parameters 
■    Cooling / Therm. Mod. of Key Importance / Anisotr. Behavior of Litz Wire / Mag. Tape 
■    20kHz Operation Defined by IGBT Sw. Losses / Fixed Geometry 
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► MF Transformer Prototype 

■    Power Rating            166 kW 
■    Efficiency                   99.5% 
■    Power Density      44 kW/dm3  

–    Nanocrystalline Cores  
      with 0.1mm Airgaps 
      between Parallel Cores for 
      Equal Flux Partitioning 

 
–    Litz Wire (10 Bundles, 
      950 x 71μm Each) 
      with CM Chokes for  
      Equal Current  
      Partitioning 
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   Little Box Challenge    
  Ultra-Efficient 3-Φ PFC Rectifier 

Calculation of Converter  
η-ρ-    Performance Limits  



Selected Converter Topology    

   ZVS of All Bridge Legs @ Turn-On/Turn-Off in Whole Operating Range (4D-TCM-Interleaving)  
   Heatsinks Connected to DC Bus / Shield  to Prevent Cap. Coupling to Grounded Enclosure   

■   Interleaving of 2 Bridge Legs per Phase    
■   Active DC-Side Buck-Type Power Pulsation Buffer 
■   2-Stage EMI AC Output Filter   

(1)  Heat Sink 
(2)  EMI Filter 
(3)  Power Pulsation Buffer  
(4)  Enclosure    
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High Frequency Inductors (1)   

  Dimensions  - 14.5 x 14.5 x 22mm3 

-  L= 10.5μH 
-  2 x 8 Turns 
-  24 x 80μm Airgaps  
-  Core Material DMR 51 / Hengdian 
-  0.61mm Thick Stacked Plates 
-  20 μm Copper Foil / 4 in Parallel 
-  7 μm Kapton Layer Isolation 
-  20mΩ Winding Resistance / Q≈600 
-  Terminals in No-Leakage Flux Area 

■   Multi-Airgap Inductor with Multi-Layer Foil Winding Arrangement Minim. Prox. Effect 
■   Very High Filling Factor / Low High Frequency Losses 
■   Magnetically Shielded Construction Minimizing EMI 
■   Intellectual Property of F. Zajc / Fraza 
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Multi-Airgap Inductor Core Loss Measurements (1)  
■   Investigated Materials  -  DMR51, N87, N59 
■  30 µm PET Foil with Double Sided Adhesive Between the Plates  
■  Varying Number N of Air Gaps Assembled from Thin Ferrite Plates 
■  Number of Air Gaps: 

Solid N=6 N=20 

   Sinusoidal Excitation with Frequencies in the Range of 250 kHz …1MHz 
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■  Losses in Sample – Increasing Temperature 
■  Excitation with 100 mT @ 750 kHz 
■  Start @ T=35°C 
■  Excitation Time = 90 s 

Multi-Airgap Inductor Core Loss Measurements (3)  

Solid, ΔT =27.7°C  N=20, ΔT =73.5°C  
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■   Total Core Loss in Sample with Varying Air Gaps and Test Fixture 
■   Excitation @ 500 kHz 

  Ext. of Steinmetz Eq.                                                                                            Sufficiently  Accurate 

DMR51 N59 N87 

P l
os

s 
(W

at
t)

 

# Air Gaps # Air Gaps # Air Gaps 

Linear Fit of 
Measurements 

Analytical  
Approximation 
of Ploss(N) 

Multi-Airgap Inductor Core Loss Approximation (2)  
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DMR 51 Untreated – FIB Preparation (1)  
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DMR 51 ETCHED – FIB Preparation (2) 
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Little-Box 1.0 Prototype      

–  8.2 kW/dm3   
–  96,3%  Efficiency @ 2kW 
–  Tc=58°C @ 2kW 

■   Performance        

   Analysis of Potential Performance Improvement for “Ideal Switches”  

–  600V IFX Normally-Off GaN GIT  
–  Antiparallel SiC Schottky Diodes  
–  Multi-Airgap Ind. w. Multi-Layer Foil Wdg 
–  Triangular Curr. Mode ZVS Operation 
–  CeraLink Power Pulsation Buffer 

■   Design Details        
 135 W/in3 
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  Analysis of  Improvement of  Efficiency @ Given Power Density  &  Maximum Power Density  
  The Ideal Switch is NOT Enough (!) 

 Little Box 1.0 @ Ideal Switches (TCM) 

■   Multi-Objective Optimization of Little-Box 1.0  (X6S Power Pulsation Buffer)  
■   Step-by-Step Idealization of the Power Transistors 
■   Ideal Switches:  kC= 0 (Zero Cond. Losses);  kS= 0 (Zero Sw. Losses) 

Zero Output  
Cap. and Zero Gate 
Drive Losses 
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Source: whiskeybehavior.info 

Overall 
Summary 



► Future Prospects of Power Electronics   

  Future Extension of Power Electronics Application Area 
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► Future Prospects of Magnetics  

–    Magnetics are Basic Functional Elements (Filtering of Sw. Frequ. Power, Transformers)  
–    Non-Ideal Material Properties  (Wdg. & Core) Result in Finite Magnetics Volume (Scaling Laws) 
–    Manufacturing Limits Performance (Strand & Tape Thickness etc.) @ Limited Costs 

■    Side Conditions     

■   Option #1:    Improve Modeling / Optimize Design 
–    Core Loss Modeling / Measurement Techniques (Cores and Complete Ind. / Transformer)  
–    Multi-Obj. Optimiz. Considering Full System 
–    Design for Manufacturing  

■   Option #3:    Minimize Requirement  
–    Multi-Level Converters 
–    Magnetic Integration 
–    Hybrid (Cap./Ind.) Converters   

  Magnetics/Passives-Centric Power Electronics Research Approach ! 

■   Option #2:    Improve Material Properties / Manufacturing  

–    Integrated Cooling 
–    PCB-Based Magnetics with High Filling Factor (e.g. VICOR) 
–    Advanced Locally Adapted Litz Wire / Low-μ Material (Distributed Gap) / Low HF-Loss Material   



 

■   End        



  Thank You !  


