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Outline 

► The                 Little Box Challenge 
 
► Little Box 1.0  
► Concepts & Performances of Other Finalists 
► Little Box 2.0    
 

► Conclusions   



    

  Requirements 
  The Grand Prize  
  Finalists & Finals 

 
Little Box Challenge 



●  Design / Build the 2kW 1-ΦSolar Inverter with the Highest Power Density in the World 
●  Power Density > 3kW/dm3 (> 50W/in3, multiply  kW/dm3 by Factor 16) 
●  Efficiency    > 95% 
●  Case Temp.  < 60°C 
●  EMI  FCC Part 15 B 

■  Push the Forefront of New Technologies in R&D of High Power Density Inverters 

! 

! 

! 

! 
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The Grand Prize 

■  Timeline      – Challenge Announced in Summer 2014 
       – 2000+ Teams Registered Worldwide 
       – 100+ Teams Submitted a Technical Description until July 22, 2015 
       – 18 Finalists (3 No-Shows) 

$1,000,000 

●  Highest Power Density (> 50W/in3) 
●  Highest Level of Innovation 
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Finalists 

- 5 Companies 
- 6 Consultants  
- 4 Universities    

* and  FH IZM / 
           Fraza d.o.o. 

Univ. of Tennessee   

Univ. of Illinois    

Virginia Tech   
     Rompower   

Schneider 
Electric   

Tommasi 
Bailly   

CE+T   

Energy 
Layer   

AHED   OKE Services   

Cambridge 
Active 
Magnetics   

AMR   

Venderbosch   

Fraunhofer 
IISB   

                     * 
  

15 Teams/Participants in the Final @ NREL 
   



– Finalists Invited to NREL / USA 
– Presentations on Oct. 21, 2015 
– Subsequent Testing by NREL 
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Final Presentations 



Acknowledgement 

 
Little Box 1.0     

  Converter Topology 
  Modulation & Control  
  Technologies /Components   
  Mechanical Concept 
  Exp. Analysis   



Derivation of     
Converter Concept  



1-Φ Output Power 
Pulsation Buffer 



●  Parallel Buffer @ DC Input 

●  Series Buffer @ DC Input 

■  Parallel Approach for Limiting Voltage Stress on Converter Stage Semiconductors  

Power Pulsation Buffer   
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Passive Power Pulsation Buffer (1) 

■  C > 2.2mF / 166 cm3       Consumes 1/4 of  Allowed Total Volume ! 

S0 = 2.0 kVA 
cos Φ0 = 0.7 
VC,max = 450 V 
ΔVC/VC,max=3 % 

●  Electrolytic Capacitor 

5 x 493μF/450 V 
C = 2.46 mF 
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*  Cr =   20 μF 
*  Lr = 127 mH @ vLr = 400 V 

●  Series Resonant Circuit / Used in Rectifier Input Stage of Locomotives 

■  Unacceptably Large Inductor Volume !                  Electronic Inductor 

fr = 120Hz 

Passive Power Pulsation Buffer (2) 
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●  Coupling Capacitor & “Electronic Inductor” Processing Only Partial Power  

■  Low UC,aux   Low Converter Losses 
■  High Values of CK, Caux Required for Low UC,aux 
■  Full-Bridge Aux. Converter Allows Lower UC,aux 

Partial Active Power Pulsation Buffer   

*  Ertl  (1999) 
*  Enslin (1991) 
*  Pilawa (2015) 

Electronic  
Inductor  
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●   Large Voltage Fluctuation Foil or Ceramic Capacitor  
●   Buck- or Boost-Type DC/DC Interface Converter 
●   Buck-Type allows Utilizing 600V Technology  

■  Significantly Lower Overall Volume Compared to Electrolytic Capacitor 

108 x 1.2 μF /400 V 
Ck ≈ 140 μF 
VCk= 23.7cm3 

CeraLink 

Full Active Power Pulsation Buffer *  Kyritsis (2007) 
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   Output Stage  
Topology / Modulation 



–  Boost-Type 
    1-Φ PFC Rectifier 

–   DC/|AC| Buck Converter & 
     Mains Frequency “Unfolder” 

  Analysis Only for cos Φ = -1  

●   Inversion of Basic 1-Φ PFC Rectifier Topology 

Derivation of Output Stage Topology (1) 

*  Erickson (2009) 
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■  CM Component of Output Voltage vO 
■  Larger EMI Filtering Requirement Due to Temporary High-Frequ. Switching of Unfolder 

●  Temporary PWM Operation of Unfolder @ U < Umin   to Avoid AC Current Distortion  

! 
! 

Advanced DC/│AC│-Buck Conv. & Unfolder 
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●  New Control Concept - PWM Operation of Mains Freq. Unfolder Bridge Leg @ |u| < u0,min  

■  CM Component uCM of Generated Output Voltage 
■  Potentially Larger EMI Filtering Requirement  

! 

! 

Advanced Full-Bridge DC/AC Conv. Topology  
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●  Symmetric PWM Operation of Both Bridge Legs 
●  No Low-Frequency CM Output Voltage Component 

■   DM Component of  u1 and u2  Defines Output  uO 
■   CM Component of  u1 and u2  Represents Degree of Freedom of the Modulation (!) 

Symmetric PWM Full-Bridge AC/DC Conv. Topology  
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■   Requires Only Measurement of Current Zero Crossings, i = 0 
■   Variable Switching Frequency Lowers EMI 

●  TCM Operation for Resonant Voltage Transition @ Turn-On/Turn-Off 

ZVS of Output Stage / TCM Operation   


 


 

*  Henze (1988) 
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4D-Interleaving    
●  Interleaving of 2 Bridge Legs per Phase  - Volume / Filtering / Efficiency Optimum 
●  Interleaving in Space & Time – Within Output Period 
●  Alternate Operation of Bridge Legs @ Low Power 
●  Overlapping Operation @ High Power 

■   Opt. Trade-Off of Conduction & Switching Losses  / Opt. Distribution of Losses 
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Remark:  i TCM Inverter Topology  

*  P. Jain (2015) 

●  TCM :   Challenging Inductor Design  Superposition of HF & LF Currents 
●  iTCM:   Adding LC-Circuit between Bridge Legs  Separation of LF & HF Currents  L >>LB   

■   Low Output Current Ripple     Reduced Filtering Effort 
■   PWM Modulation Applicable     Simple Control Strategy 
■   Dedicated LF and HF Inductor Designs Possible      Improved Converter Efficiency 

– TCM  – iTCM  
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Selection of Switching Frequency 
●  Significant Reduction in EMI Filter Volume for Increasing  Sw. Frequency 

■   Doubling  Sw. Fequ.  fS  Cuts Filter Volume in Half  
■   Upper Limit due to Digital Signal Processing Delays / Inductor & Sw. Losses – Heatsink Volume 
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EMI Filter Topology (1)  
●  Conventional Filter Structure  – DM Filtering Between the Phases 
   – CM Filtering     Between Phases and PE 

■   CM Cap. Limited by Earth Current Limit – Typ. 3.5mA for PFC Rectifiers (GLBC: 5mA then 50mA !) 
■   Large CM Inductor Needed – Filter Volume Mainly Defined by CM Inductors 
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EMI Filter Topology (2)   
●  Filter Structure with Internal CM Capacitor Feedback  
●  Filtering to DC- (and optional to DC+) 

■   No Limitation of CM Capacitor C1 Due to Earth Current Limit  µF Instead of nF Can be Employed 
■   Allows Downsizing of CM Inductor and/or Total Filter Volume   
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Final Converter Topology    

■   ZVS of All Bridge Legs @ Turn-On/Turn-Off in Whole Operating Range (4D-TCM-Interleaving)  
■   Heatsinks Connected to DC Bus / Shield  to Prevent Cap. Coupling to Grounded Enclosure   

●  Interleaving of 2 Bridge Legs per Phase    
●  Active DC-Side Buck-Type Power Pulsation Buffer 
●  2-Stage EMI AC Output Filter   (1)  Heat Sink 

(2)  EMI Filter 
(3)  Power Pulsation Buffer  
(4)  Enclosure    
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Power Semiconductors 
HF Inductors  

   Cooling 
Etc. 

Technologies  

■ 



●  Accurate Measurement of ZVS Losses Using Calorimetric Approach   
●  High Sw. Frequency for Large Ratio of Sw. and Conduction Losses 

Evaluation of Power Semiconductors (1) 
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■  Direct Measurement of the Sum of Sw. and Conduction Losses 
■  Subtraction of the Conduction Losses Known from Calibration 
■  Fast Measurement  by Cth.ΔT/Δt  Evaluation    



Evaluation of Power Semiconductors (2)  

●  Comparison of Soft-Switching Performance of ~60mΩ, 600V/650V/900V GaN, SiC, Si MOSFETs 
●  Measurement of Energy Loss per Switch and Switching Period 

■   GaN MOSFETs Feature Highest Soft-Switching Performance 
■   Similar Soft-Switching Performance Achieved with Si and SiC 
■   Almost No Voltage-Dependency of Soft-Switching Losses for Si-MOSFET 
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High Frequency Inductors (1)   

■  Dimensions  - 14.5 x 14.5 x 22mm3 

-  L= 10.5μH 
-  2 x 8 Turns 
-  24 x 80μm Airgaps  
-  Core Material DMR 51 / Hengdian 
-  0.61mm Thick Stacked Plates 
-  20 μm Copper Foil / 4 in Parallel 
-  7 μm Kapton Layer Isolation 
-  20mΩ Winding Resistance / Q≈600 
-  Terminals in No-Leakage Flux Area 

●   Multi-Airgap Inductor with Multi-Layer Foil Winding Arrangement Minim. Prox. Effect 
●   Very High Filling Factor / Low High Frequency Losses 
●   Magnetically Shielded Construction Minimizing EMI 
●   Intellectual Property of F. Zajc / Fraza 
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High Frequency Inductors (2)  
●  High Resonance Frequency  Inductive Behavior up to High Frequencies 
●  Extremely Low AC-Resistance  Low Conduction Losses up to High Frequencies 
●  High Quality Factor   

25/68 

■  Shielding Eliminates HF Current through the Ferrite  Avoids High Core Losses  
■  Shielding Increases the Parasitic Capacitance 



■  Comparison of Temp. Increase of a Bulk  
    and a Sliced Sample @ 70mT / 800kHz 

●   Cutting of Ferrite Introduces Mech. Stress   
●   Significant Increase of the Loss Factor 
●   Reduction by Polishing / Etching (5 μm)  

x 7 (!) 

*  Knowles (1975!) 

High Frequency Inductors (3)   
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Thermal Management   

●  Evaluation of Optimum Heatsink Temperature for Thermal Isolation of Converter 

●  30°C max. Ambient Temperature 
●  60°C max. Allowed Surface and Air Outlet Temperature 

■   Minimum Volume Achieved w/o Thermal Isolation with Heatsink @ max. Allowed Surface Temp. 
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Thermal Management   
●  Overall Cooling Performance Defined by Selected Fan Type and Heatsink 

–  Axial Fan –  Radial 
     Blower 

–  Square  
Cross Section 

of Heatsink for 
Using a Fan   

–  Flat and 
 Wide 

Heatsink 
for Blower 
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■  Optimal Fan and Heat Sink Configuration Defined by Total Cooling System Length 
■  Cooling Concept with Blower Selected  Higher CSPI for Larger Mounting Surface  



●   30mm Blowers with Axial Air Intake / Radial Outlet 
●   Full Optimization of the Heatsink Parameters 

-  200um  Fin Thickness  
-  500um  Fin Spacing    
-  3mm Fin Height  
-  10mm Fin Length   
-  CSPI = 37 W/(dm3.K)  
-  1.5mm Baseplate 

■  CSPIeff= 25 W/(dm3.K) Considering Heat Distribution Elements 
■  Two-Side Cooling   Heatsink Temperature = 52°C @ 80W  (8W by Natural Convection) 

 Final Thermal Management Concept (1)   
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●   CSPI = 37 W/(dm3.K) 
●   30mm Blowers with Axial Air Intake / Radial Outlet 
●   Full Optimization of the Heatsink Parameters 
●   CSPIeff=25 W/(dm3.K) incl. Heat Cond. Layers 

■  CSPIeff= 25 W/(dm3.K) Considering Heat Distribution Elements 
■  Two-Side Cooling   Heatsink Temperature = 52°C @ 80W  (8W by Natural Convection) 

 Final Thermal Management Concept (2)   
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 i     =   0 Detection   

●   Analyzed Methods • Shunt Current Measurement   
• Measurement of the Rds,on   
• Two Antiparallel Diodes   
• Giant Magneto-Resistive Sensor  
• Hall Element  
   
• Saturable Inductor  

Losses, No Galvanic Isolation, 
Low Signal-to-Noise Ratio (SNR), 
Size, Bandwidth, Realization 
Effort 

Various Drawbacks 

■      Galvanic Isolation, High SNR,  
      Small Size, High Bandwidth,  
      Simple Design 
 
■   Min. Core Volume/Cross Section for Min. Core Losses    
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●   Saturable Inductor –  Toroidal Core       R4 x 2.4 x 1.6, EPCOS (4mm Diameter) 
–  Core Material    N30, EPCOS 

■   Operation Tested up to 2.5MHz Switching Frequency 
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 i     =   0 Detection   



Active Power Pulsation Buffer   
●  New Cascaded Control Structure  

■   P-Type Resonant Controller 
■   Feedforward of Output Power Fluctuation 
■   Underlying Input Current (ii) / DC Link Voltage (uC) Control 
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 Final Active Power Pulsation Buffer 
●   High Energy Density 2nd Gen. 400VDC CeraLink Capacitors  Utilized as Energy Storage 
●   Highly Non-Linear Behavior  Optimal DC Bias Voltage of 280VDC 
●   Losses of 6W @ 2kVA Output Power  

■  Effective Large Signal Capacitance of C ≈160μF 

-  108 x 1.2μF /400 V 
-  23.7cm3 Capacitor Volume 
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3D-CAD Construction 



Mechanical Construction (1) 

●  Built to the Power Density Limit @ η= 95%  / Tc < 60°C  

■  88.7mm x 88.4mm x 31mm = 243cm3 (14.8in3 )  8.2 kW/dm3  

Top Side Heatsink 
Power  

Pulsation  
Buffer  

Cap. 

Power  
Pulsation  

Buffer  
Inductor 
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Mechanical Construction (2) 

■  88.7mm x 88.4mm x 31mm = 243cm3 (14.8in3 )  8.2 kW/dm3  

i=0 
Detector 

Power Pulsation Buffer 
Bridge Leg 

Auxiliary  
Supply & 
Measurement 
Board 

36/68 

●  Built to the Power Density Limit @ η= 95%  / Tc < 60°C  



Mechanical Construction (3) 

■  88.7mm x 88.4mm x 31mm = 243cm3 (14.8in3 )  8.2 kW/dm3  

Bottom Side 
Heat Sink 

DSP/FPGA 
Board Gate Driver 

Board 
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●  Built to the Power Density Limit @ η= 95%  / Tc < 60°C  



Mechanical Construction (4) 

■  88.7mm x 88.4mm x 31mm = 243cm3 (14.8in3 )  8.2 kW/dm3  

Output Stage 
Inductor Cooling Output Stage  

Transistor Heat 
Spreading 
 

Output Stage 
Power Board 

Output Stage 
Inductors 
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●  Built to the Power Density Limit @ η= 95%  / Tc < 60°C  



Mechanical Construction (5) 

■  88.7mm x 88.4mm x 31mm = 243cm3 (14.8in3 )  8.2 kW/dm3  

Two-Stage 
EMI Filter 

CM Inductor 

DM Inductor 
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●  Built to the Power Density Limit @ η= 95%  / Tc < 60°C  



  Hardware 
   Output Voltage/Input Current Quality 

Efficiency  

Experimental Results  



●   System Employing Active Ceralink 1-Φ Power Pulsation Buffer      

Little Box 1.0  -  Prototype   

- 8.2 kW/dm3   
- 8.9cm x 8.8cm x 3.1cm    
- 96,3%  Efficiency @ 2kW 
- Tc=58°C @ 2kW 
 
- ΔuDC,pp        = 1.1% 
- ΔiDC,pp     = 2.8% 
- THD+NU = 2.6% 
- THD+NI  = 1.9% 

 135 W/in3 

■  Compliant to All Original Specifications (!) 
 

-  No Low-Frequ. CM Output Voltage Component 
-  No Overstressing of Components 
-  All  Own IP / Patents   
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Little Box 1.0  -  Prototype   

- 8.2 kW/dm3   
- 8.9cm x 8.8cm x 3.1cm    
- 96,3%  Efficiency @ 2kW 
- Tc=58°C @ 2kW 
 
- ΔuDC=  1.1% 
- ΔiDC=   2.8% 
- THD+NU = 2.6% 
- THD+NI = 1.9% 

■  Compliant to All Original Specifications (!) 
 

-  No Low-Frequ. CM Output Voltage Component 
-  No Overstressing of Components 
-  All  Own IP / Patents   

 135 W/in3 
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●   System Employing Active Ceralink 1-Φ Power Pulsation Buffer      



■  Compliant to All Specifications    

Output Current  (10 A/div) 
Inductor Current  Bridge Leg 1-1  (10 A/div)  
Inductor Current  Bridge Leg 1-2  (10 A/div) 

DC Link Voltage (AC-Coupl., 2 V/div) 
Buffer Cap. Voltage  (20 V/div)  
Buffer Cap. Current  (10 A/div)  

Output Voltage  (200 V/div) 

-  Ohmic Load / 2kW 

Little Box 1.0 - Measurement Results (1)    
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●   System Employing Active Ceralink 1-Φ Power Pulsation Buffer      



■  Compliant to All Specifications    

ηw=95.07%  Weighted Efficiency  

Measured Efficiency      
Interpolated Efficiency      

Output Power      

Ef
fi

ci
en

cy
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●   System Employing Active Ceralink 1-Φ Power Pulsation Buffer      

Little Box 1.0 - Measurement Results (2)    



■  Stationary Operation @ 2kW Output Power  

Buffer Cap. Voltage  (50 V/div) 
Buffer Cap. Current  (10 A/div)  

Conv. Inp. Curr.  (AC Coupl. 500 mA/div) 
DC Link Voltage  (AC Coupl. 1 V/div) 
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●   System Employing Active Ceralink 1-Φ Power Pulsation Buffer      

Little Box 1.0 - Measurement Results (3)    



Little Box 1.0 -  Volume and Loss Distribution   

■  Large Heatsink (incl. Heat Conduction Layers) 
■  Large Losses in Power Fluctuation Buffer Capacitor (!) 
■  TCM Causes Relatively High Conduction & Switching Losses @ Low Power 
■  Relatively Low Switching Frequency @ High Power – Determines EMI Filter Volume  

●   Volume Distribution (240cm3) ●   Loss Distribution (75W) 
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■  Other Finalists  
  Topologies  

Switching Frequencies 
Power Density / Efficiency Comparison   

Detailed Descriptions:  
www.LittleBoxChallenge.com 



Finalists - Performance Overview   
●   18 Finalists (3 No-Shows)     
●   7 Groups of Consultants / 7 Companies / 4 Universities  

■  70   …   300 W/in3 

■  35 kHz …    500kHz    …    1 MHz (up to 1MHz: 3 Teams) 
■  Full-Bridge or  DC/   AC  Buck Converter + Unfolder  
■  Mostly Buck-Type Active Power Pulsation Filters (Ceramic Caps of Electrolytic Caps) 
■  GaN (11 Teams) / SiC (2 Teams) / Si (2 Teams)  
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x 2  

x 5  

IV  III  II  

 
Note: Numbering of  

Teams is Arbitrary.  .    



Finalists - Performance Overview   
●   18 Finalists (3 No-Shows)     
●   7 Groups of Consultants / 7 Companies / 4 Universities  

47/68 

(1) Virginia Tech 
(2) Schneider Electric 
(3) EPRI (Univ. of Tennessee) 
(4) Venderbosch  
(5) Energy Layer 

(6) ETH Zurich 
(7) Rompowe r 
(8) Tommasi-Bailly 
(9) Red Electric Devils 
(10) AHED 

(11) FH IISB 
(12) Univ. of Illinois 
(13) AMR 
(14) OKE 
(15) Cambridge Magnetics 

x 2  

x 5  

IV  III  II  

 
Note: Numbering of  

Teams is Arbitrary.  .    



■  70   …   300 W/in3 

■  35 kHz …    500kHz    …    1 MHz (up to 1MHz: 3 Teams) 
■  Full-Bridge or  DC/   AC  Buck Converter + Unfolder  
■  Mostly Buck-Type Active Power Pulsation Filters (Ceramic Caps of Electrolytic Caps) 
■  GaN (11 Teams) / SiC (2 Teams) / Si (2 Teams)  

●   18 Finalists (3 No-Shows)     
●   7 Groups of Consultants / 7 Companies / 4 Universities  

Finalists - Performance Overview   
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@ Rated Power 

(1) Virginia Tech 
(2) Schneider Electric 
(3) EPRI (Univ. of Tennessee) 
(4) Venderbosch  
(5) Energy Layer 
(6) ETH Zurich 
(7) Rompowe r 
(8) Tommasi-Bailly 
(9) Red Electric Devils 
(10) AHED 
(11) FH IISB 
(12) Univ. of Illinois 
(13) AMR 

 
Note: Numbering of  

Teams is Arbitrary.  .    



Category I:  300 – 400 W/in3  (1 Team) 
● “Over the Edge” 
●  Hand-Wound Overstressed & Too Small Electrolytic Capacitors  (210uF/400V) 
●  No Voltage Margin of Power Semiconductors (450V GaN, Hard Switching)  
●  50V Voltage Source for Semicond. Voltage Stress Reduction 
●  Low-Frequ. CM AC Output Component 

●  Alternate Switching of Full-Bridge Legs 
●  Input Cap. of Full-Bridge Used for Power Pulsation Buffering 
 
●  256 W/in3 (400 W/in3  Claimed) / 1MHz 
●  Multi-Airgap Toroidal Inductors (3F46, Cp≈1.5pF ) 
●  Bare GaN Dies Directly Attached to Pin-Fin Heatsink  
●  High Speed Fan (Mini Drone Motor & Propeller) 

2x 

4x 
2x 
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Category I:  300 – 400 W/in3  (1 Team) 
● “Over the Edge” 
●  Hand-Wound Overstressed Electrolytic Capacitors  (210uF (?)/400V) 
●  No Voltage Margin of Power Semiconductors (450V GaN, Hard Switching)  
●  50V Voltage Source for Semicond. Voltage Stress Reduction 

●  Alternate Switching of Full-Bridge Legs 
●  Input Cap. of Full-Bridge Used for Power Pulsation Buffering 
 
●  256 W/in3 (400 W/in3  Claimed) / 1MHz 
●  Multi-Airgap Toroidal Inductors (3F46, Cp≈1.5pF ) 
●  Bare Dies Directly Attached to Pin-Fin Heatsink  
●  High Speed Fan (Mini Drone Motor & Propeller) 
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Category II:  200 – 300 W/in3 (4 Teams) – Example #1  

●  “At the Edge”     
●   High  Complexity  
●   7-Level Flying Capacitor Converter  
●   Series-Stacked Active Power Buffer 
 

■  216 W/in3  

■  100V GaN  
■  Integrated Switching Cell  
■  720kHz Eff. Sw. Frequ. (7 x 120kHz) 
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Category II:  200 – 300 W/in3 (4 Teams) – Example #2  

●  “At the Edge” 
●   Very Well Engineered Assembly (e.g. 3D-Printed Heatsink w. Integr. Fans, 1 PCB Board, etc.) 
●   No Low-Frequ. Common-Mode AC Output Component  

■ 201W / in3 

■ Multi-Airgap (8 Gaps) Inductors 
■ 900V SiC @ 140kHz (PWM, Soft Sw. Around i=0 & Hard Switching)  
■ Buck-Type Active DC-Side Power Pulsation Filter / Ceramic Capacitors (X6S) 
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Category III:  100 – 200 W/in3 (8 Teams) – Example 
● “Advanced Industrial”     
●   Sophisticated 3D Sandwich Assembly incl. Cu Honeycomb Heatsink 
●   Shielded Multi-Stage EMI Filter @ DC Input and AC Output 
●   No Low-Frequ. Common-Mode AC Output Component  

■  143 W/in3 

■  GaN @ ZVS (35kHz…240kHz) 
■  2 x Interleaving for Full-Bridge Legs 
■  Buck-Type DC-Side Active Power Pulsation Filter (<150μF)    
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Category III:  100 – 200 W/in3 (8 Teams) – Example 
● “Advanced Industrial”     
●   Sophisticated 3D Sandwich Assembly incl. Cu Honeycomb Heatsink 
●   Shielded Multi-Stage EMI Filter @ DC Input and AC Output 
●   No Low-Frequ. Common-Mode AC Output Component  

► 
► 

■  143 W/in3 

■  GaN @ ZVS (35kHz…240kHz) 
■  2 x Interleaving for Full-Bridge Legs 
■  Buck-Type DC-Side Active Power Pulsation Filter (<150μF)    
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Category IV:  50 – 100 W/in3 (1 Team) 
●  “Industrial”   
●    400Vmax Full-Bridge Input Voltage  
●    DC-Link Cap. Used as Power Pulsation Buffer (470uF)   
●    GaN Transistors / SiC Diodes (400kHz DC/DC, 60kHz DC/AC) 
●    Multi-Stage EMI Filter @ AC Output and LCM + Feed-Trough CCM @ DC Inp. (Not Shown)  

■  ≈70 W/ in3 

■  98% CEC (Weighted) Efficiency  
■  4.4% DC Input Current Ripple 

■  54°C Surface Temp. / Cooling with 10 Mirco-Fans 
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■ 
 Competition 
Conclusions 
  Key Technologies  

Power Density Limit   



            Little Box Challenge Summary  

■  200W/in3 (12kW/dm3) Achievable 

●  fs < 150kHz (Constant)   
●  SiC (Not GaN) 
●  ZVS (Partial, i.e. Around i=0)    
●  Full-Bridge Output Stage  
●  Active Power Pulsation Buffer (Buck-Type, X6S Cap.) 
●  Conv. EMI Filter Structure 
●  Multi-Airgap Litz Wire Inductors 
●  DSP Only (No FPGA) 

■  Overall    

●  Engineering “Jewels” 
●  No (Fundamentally) New Approach / Topology 
●  Passives & 3D-Packaging are Finally Defining the Power Density 
●  Careful Heat Management (Adv. Heat Sink, Heat Distrib., 2-Side Integr. Cooling, etc.) 
●  Careful Mechanical Design (3D-CAD, Single PCB, Avoid Connectors, etc.) 
●  Clear Power Density / Efficiency Trade-Off    
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   100+ Teams 
  3 Members / Team, 1 Year 

 300 Man-Years  
  3300 USD / Man-Year 



 
Little Box 2.0     

   DC/│AC│Converter + Unfolder 
   PWM vs. TCM incl. Interleaving        
   ηρ-Pareto Limits for Non-Ideal Switches 
   Final 3D-CAD 
   Preliminary Exp. Results 

250 W/in3 



 Little Box 2.0 – New Converter Topology (1) 
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■  vC0  Easy to Generate/Control 
■  Higher Conduction Losses Due to FB-Unfolder   
■  Lower CM-Noise (DC & n x 120Hz-Comp.) 
■  CCM=700nF Allowed for 50mA Gnd Current 

■  vAC1 More Difficult to Generate/Control 
■  Lower Conduction Losses 
■  Higher CM-Noise (DC and n x 120Hz-Comp.) 
■  CCM=150nF Allowed for 50mA Gnd Current 

●   Alternative Converter Topology  Only Single HF Bridge Leg + 60Hz-Unfolder  
●   DC/│AC│- Buck Converter + Full-Bridge Unfolder  OR  HF Half-Bridge & Half-Bridge Unfolder 



 Little Box 2.0 – New Converter Topology (2) 
●   Alternative Converter Topology - DC/│AC│- Buck Converter + Unfolder 
●   60Hz-Unfolder (Temporary PWM for Ensuring Continuous Current Control) 
●   TCM  or PWM of  DC/│AC│- Buck-Converter  

■  Full Optimization of All Converter Options for Real Switches / X6S Power Pulsation Buffer 
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 Little Box 2.0 – Multi-Objective Optimization  
●   DC/│AC│- Buck Converter (Single Bridge Leg) + Unfolder & PWM Shows Best Performance 
●   Full-Bridge Would Employ 2 Switching Bridge Legs -  Larger Volume & Losses 
●   Interleaving Not Advantageous – Lower Heatsink Vol. but Larger Total Vol. of Switches and Inductors  

■  ρ= 250W/in3 (15kW/dm3) @ η= 98% Efficiency Achievable for Full Optimization   


 


 

--  4D-Interleaving Considered for TCM     
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 Little Box 2.0 – Control Structure 

■    Each Stage (Buck & Unfolder) Controlled with Cascaded Current and Voltage Loop 
■    Without Switching of Unfolder Control Like for Conventional Boost PFC Rectifier 
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3D-CAD Construction 

of the Final System 

250 W/in3 



 Little Box 2.0 – Final Mechanical Construction (1) 
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■  60 mm x 50 mm x 45 mm = 135 cm3 (8.2in3 )  14.8 kW/dm3 (243 W/in3) 

PPB Capacitor 
Output Filter 
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 Little Box 2.0 – Final Mechanical Construction (2) 

■  60 mm x 50 mm x 45 mm = 135 cm3 (8.2in3 )  14.8 kW/dm3 (243 W/in3) 

PPB Capacitor 

Heat Sink + Fans 

Output Filter 



63/68 

 Little Box 2.0 – Final Mechanical Construction (3) 

■  60 mm x 50 mm x 45 mm = 135 cm3 (8.2in3 )  14.8 kW/dm3 (243 W/in3) 

PPB Capacitor 

  Inductors 
(Buck-Stage & 
  Unfolder) 

Heat Sink + Fans 

Output Filter 



64/68 

PPB Capacitor 

Heat Sink + Fans 

Power Board 

■  60 mm x 50 mm x 45 mm = 135 cm3 (8.2in3 )  14.8 kW/dm3 (243 W/in3) 

 Little Box 2.0 – Final Mechanical Construction (4) 

  Inductors 
(Buck-Stage & 
  Unfolder) 

Output Filter 
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Control Board 

 Little Box 2.0 – Final Mechanical Construction (5) 

PPB Capacitor 

Heat Sink + Fans 

Power Board 

■  60 mm x 50 mm x 45 mm = 135 cm3 (8.2in3 )  14.8 kW/dm3 (243 W/in3) 

  Inductors 
(Buck-Stage & 
  Unfolder) 

Output Filter 



■    Capacitive Load 

 Little Box 2.0 – Measured Waveforms 

●  DC/|AC| Buck-Stage Output Voltage & Inductor Current 

■    Inductive Load ■    Resistive Load 
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 Little Box 2.0 – Preliminary Efficiency Measurements 

●   Performance of First DC/│AC│- Buck Converter + Unfolder Prototype 
●   PWM Operation 
●   Without Power Pulsation Buffer 

■  98% for Res. Load Achievable if Cond. Losses of PCB (Copper Cross Sect.) & Unfolder (Rds,on) are Red. 
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Source: whiskeybehavior.info 

Overall 
Summary 



 Performance Limits / Future Requirements   

●  New Integr. Control Circuits and i=0 Detection for Sw. Frequency >1MHz    
●  Integrated Gate Drivers & Switching Cells 
●  High Frequency Low Loss Magnetic Materials 
●  High Bandwidth Low-Volume Current Sensors 
●  Low Loss Ceramic Capacitors Tolerating Large AC Ripple 
●  Passives w. Integr. Heat Management and Sensors 
●  3D Packaging  

●  New U-I-Probes Required for Ultra-Compact Conv. R&D 
●  Specific Systems for Testing  Devices Equipped with Integr. Measurement Functions  
●  Convergence of  Sim. & Measurem. Tools  Next Gen. Oscilloscope 
●  New Multi-Obj. Multi-Domain Simulation/Optim. Tools  
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●  220…250W/in3 for Two-Level Bridge Leg + Unfolder  
●  250…300W/in3 for Highly Integrated Multi-Level Approach  
●  Isol. Distance Requirements Difficult to Fulfill 
●  Fulfilling Industrial Inp. Overvoltage Requirem. would Signific. Reduce Power Density 

●  Low Frequency (20kHz…120kHz) SiC  vs.  HF (200kHz…1.2MHz) GaN 
●  Multi-Cell Concepts for LV Si (or GaN) vs. Two-Level SiC (or GaN)  



  Thank You !  


