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Abstract. Two novel modulation schemes are proposed for three-phase AC-
AC Sparse Matrix Converters (SMC) which facilitate the formation of 
reactive input current  for purely  reactive load or purely active load and 
operation at the modulation limit. The derivation of the modulation schemes 
which also could be employed for Conventional Matrix Converters and rely 
on a decoupling of the output voltage and the input current formation is 
described in detail. Furthermore, the operating limits, i.e. the maximum 
reactive input current which could be formed for given modulation index 
and load current amplitude are determined. Finally, all theoretical 
considerations are verified by digital simulations of a 7.5kW Very Sparse 
Matrix Converter.  
 

I. INTRODUCTION
 

Sparse Matrix Converters (SMC, [1], cf. Fig.1) are functionally 
equivalent to Conventional Matrix Converters (CMC) but are 
characterized by a lower realization effort and a lower control 
complexity and are therefore especially interesting for an industrial 
application. 

 
 
Fig.1:  Topology of the Conventional Matrix Converter (CMC, (a)) and of 
the Very Sparse Matrix Converter (VSMC, (b)) according to [1].   
     
       
         By proper control of the input stage within each pulse half 
period two line-to-line voltages are switched into the DC link of the 
SMC. There, the input stage commutation is at zero current (cf. i in 
Fig.6 in [1], [2]) what allows to avoid a multi-step commutation 
scheme which has to be performed in dependency on the sign of the 
commutating voltage or direction of the commutating current for 
the CMC and results in low switching losses and high converter 
reliability.   

For conventional modulation of a SMC (being equivalent to indirect 
or virtual DC link modulation of a CMC), we have for the relative 
turn-on times of the single switching states [1-3] e.g. for φ1 in −π/6 
…+π/6 and φ2 in 0…+π/3  (as given in Fig.2)  
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There,  the operating range is defined by [1], [5]   
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Accordingly, for conventional modulation no output voltage 
fundamental could be formed for operation with Φ1 = ±π/2 (cf. (4)), 
or in case of Φ2 = ±π/2, no load current could be transferred to the 
input for generating a (reactive) input current fundamental (i1q=0, 
cf. (5)).  

Novel hybrid modulation schemes facilitating a utilization of a 
purely reactive load current i2 = ±j.i2q of a SMC for the formation of 
reactive input current have been proposed recently by the authors in 
[3]. For employing such modulation schemes, which rely on a 
decoupling of the output voltage and the input current formation, 
e.g. the reactive current of an asynchronous machine supplied by 
the SMC could be used for the compensation of the reactive input 
filter capacitor current also for no load operation. 

However, so far no modulation scheme has been described 
which would allow the formation of a reactive input current 
component at full output voltage while supplying a purely active 
load, i.e. 

  

00ˆˆ
1212

3
2 =Φ⇒=Φ∧= UU   

 

seems to be a basic operating limit of the SMC or CMC [4].   
 
In this paper, first the hybrid modulation schemes introduced in [3] 
are briefly discussed in Section 2.A (Two-Vector-Scheme) and 
Section 2.B (Three-Vector-Scheme). Based on this an optimum 
combination of the Two- and Three-Vector-Scheme is proposed (cf. 
Section 2.C) which allows an extension of the operating limit, i.e. a 
maximum increase of the amplitude limit of the reactive input 
current in the upper modulation range. In Section 3 the modulation 
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schemes are adapted for operation at Φ2 = 0 and it is shown that a 
reactive input current component could be formed even at full 
output voltage. Section 3.A is dedicated to the analysis of the 
adapted Two-Vector-Scheme for purely active load and Section 
3.B describes the Three-Vector-Scheme for purely active load. The 
optimum combination of both schemes concerning the operating 
range is treated in Section 3.C. Finally, the proposed modulation 
schemes are verified by digital simulations in Section 4.  
  

II. REACTIVE INPUT CURRENT FORMATION FOR
PURELY REACTIVE LOAD ( Φ 1 = ± π/2, Φ2 = π/2) 

 
A. Two-Vector Modulation Scheme for Purely Reactive Load 

 
The space vector diagrams describing the Two-Vector Modulation 
Scheme [3] are depicted in Fig. 2.   
 
 

 
 

Fig.2:   Space vector diagrams of the SMC  input stage (a) and output stage 
(b) for purely reactive input and output power. The formation of the local 
average value i1q

* of the reactive input current using the vectors (ba) and 
(ac) shown in (a) characterizes the „Two-Vector Scheme“. 
 
As explained in detail in [3], the analysis of the geometrical 
relations of  Fig.2 directly yields the relative turn-on times  
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Which have to be set for the formation of a reactive input current 
characterized by the current transfer ratio 
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The turn-on times defined by (6) are applied in the second half of a 
pulse period for the formation of the reactive input current without 
taking influence on the output voltage which is formed in the first 
half of a pulse period by conventional modulation. According to 
this combination of a voltage forming and current forming pulse 
half period the modulation scheme is denoted as Hybrid 
Modulation in the following. The basic pulse pattern comprising 
both pulse half periods is shown in Fig.6 in [3].  
 It has to be pointed out, that for the formation of the reactive 
input current the output phase current showing the largest 
instantaneous value is switched into the DC link (first with 
negative, then with positive polarity, i.e. iB, −iB in the case at hand, 
cf. Fig.2b). The final pulse pattern shown in Fig.3 merging the DC 
link current pulses i occurring for the same DC link voltage level u, 
where the relation iA + iB + iC=0 of the output phase currents  is 
considered and/or the sum of two pulses (two segments of the 
output phase currents) is  expressed by the third phase current level. 
 
We then have for the total (relative) turn-on time dtot,2V of the active 
switching states of the final pulse pattern depicted in Fig.3   
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Considering (1), (2) and (6) the total turn-on time (8) depends on 
four variables: ϕ1, ϕ2, M12 and MI where the operating limit is 
defined by dtot,2V=1 (no remaining free-wheeling interval).  
Restricting the consideration to the critical angles ϕ1,crit, ϕ2,crit  
which are associated with the maximum of dtot,2V and/or to the 
position within a mains / load period where overmodulation occurs 
first, (8) finally results in the dependency of MI on M12 shown in 
Fig.4 characterizing the operating limit. The limit is found by 
numerical calculations but also could be verified analytically [3].   
With reference to (4) it has to be pointed out that the Two-Vector 
Scheme allows the formation of a reactive input current up to 
Î1q=0.12 Î2  even at full output voltage (M12 = 1). 
 The dependency of the critical angle ϕ1,crit,2V on the modulation 
index M12 is depicted in Fig.5. Starting from 0, ϕ1,crit,2V increases 
until π/6 is reached for M12,Lim,2V =2/3. For M12,Lim,2V >2/3 the critical  
angle remains constant at π/6. For the critical position in the output 
period we have ϕ2,crit,2V =0 independent of M12.  
 
 

 
Fig.4:   Analytically derived and numerically calculated (dotted line) current 
transfer limit of the Two-Vector Scheme. M12,Lim,2V marks the transition from 
the current limiting  to the voltage limiting operating range and/or from (9) 
to (12). Even at full output voltage (M12 = 1) a reactive input current up to  
Î1q=0.12 Î2  could be formed.  
 
In the following a brief explanation of the physical reasons of the 
operating limits of the SMC concerning reactive input current 
formation which are present in similar form for all modulation 
schemes proposed in this paper shall be given. This directly leads to 
an analytical description of the operating limits and the critical 
angles.  

Fig.3:   Final pulse 
pattern resulting 
for the „Two-Vec-
tor Scheme“ aft-
er merging the 
output voltage and 
the input reactive 
current forming 
halves of the orig-
inal pulse period 
(cf. Fig.6 in [3]).  
 



• Current Limited Operating Range (M12 = 0…M12,Lim,2V) 
Considering the input stage space vector diagram (cf. Fig.2a), in 
the case of low output voltage (M12 ≈ 0) the lowest magnitude of 
the reactive input current ī1q (local average value over a pulse 
period) which defines Î1q can be formed in case the input current 
reference vector i1q

* is aligned with the symmetry axis of the 
vectors (ac) and (ba), and/or for ϕ1=0. Since the magnitude of 
the current vectors (ac) and (ba) is defined by the  output phase 
current of largest instantaneous value (±iB), the minimum of Î1q 
over ϕ2 is defined by the minimum of |±iB|, i.e. ϕ2,crit,I =0 (or ϕ2 
= π/3) is the critical value (cf. Fig.2b). In consequence, for M12 ≈ 
0 the maximum achievable MI is defined by cos(π/3). cos(π/6) = 
1⁄2√3/2.  

For M12 > 0 the operating limit MImax is further restricted by 
the finite turn on times of the active switching states of the SMC 
output stage resulting in DC link current pulses lowering the 
local reactive input current average value (cf. Fig.3). As  MImax 
still is basically determined by the magnitude of input current 
space vectors this operating range is denoted as Current Limited 
Range. There, ϕ2,crit,I remains constant, while ϕ1,crit,I increases 
with increasing M12 and reaches ϕ1,crit,II=π/6 for M12,Lin,2V =2/3. 

 
• Voltage Limited Operating Range (M12 = M12,Lim,2V …1) 

For M12,Lin,2V >2/3, ϕ1,crit,II  remains at π/6. This is equivalent to 
the fact that the output voltage formation is mainly determining 
MImax. Accordingly, this operating range is denoted as Voltage 
Limited Range. The critical load phase angle ϕ2,crit,II  is again 
constant independent of M12.  
        For voltage limited operation the pulse merging for ϕ1,crit,II, 
ϕ2,crit,II does not reduce but increase the total turn-on time. There,  
within the output voltage forming half of the pulse period only 
one line-line input voltage is switched  into the DC link and only 
one output phase current is switched into the DC link which 
shows the same polarity as the current pulse used for the reactive 
input current formation. This special case is given for 
ϕ1=ϕ1,crit,II=π/6 and ϕ2=ϕ2,crit,II=0 (within the whole output 
voltage forming half period only u = uac and i = iA is applied) 
and/or for ϕ1= −π/6 and ϕ2 = π/3 (u = uab, i = −iC).  
 

 
Fig.5: Critical angle ϕ1,crit,2V , which represents the position within a mains 
period where overmodulation concerning reactive input current formation 
occurs first. The analytical expression (10) for current limited operation 
(M12 = 0…2/3) is clearly verified by the numerical results shown by a dotted 
line. For voltage limited operation (M12 = 2/3…1) the critical angle remains  
constant at ϕ1,crit,2V =π/6;  for ϕ2  we have ϕ2,crit,2V =0 independent of M12. 
 
Based on these considerations analytical expressions defining the 
operating limits are derived in the following. 
 

As ϕ2,crit,2V =0 is given for Current Limited Operation one of the 
four variables of (8) is eliminated. For defining ϕ1, the maximum of 
(8) over ϕ1 has to be determined what results in an expression ϕ1,crit 
= f(M12, MI), cf. (22) in [3]. Inserting ϕ1,crit into (8) and setting   
dtot,2V=1 yields 
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For determining  ϕ1,crit = f(M12), (9) has to inserted into ϕ1,crit = 
f(M12, MI) what results in 
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For Voltage Limited Operation we have ϕ1,crit,2V =π/6, ϕ2,crit,2V =0 
what directly results in the desired  function 
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Equating (9) and (12) leads to the modulation index defining the 
transition between Current- and Voltage Limited Operation  
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2
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B.  Three-Vector Modulation Scheme for Purely Reactive Load 
 

 
 

Fig.6:  Space vector diagrams of the SMC input stage (a) and output stage 
(b) for purely reactive input and output power. The formation of the reactive 
input current vector i1q

* (local average value) using the vectors (ba) and (bc) 
as shown in (a) characterizes the „Three-Vector Scheme“ (for the output 
voltage formation (ac) and (ab) are employed, so in total 3 different vectors 
are utilized within each pulse period). 

 
The Three-Vector Scheme employs input current space vectors for 
the current formation which are directly neighboring the   desired 
reactive input current vector i1q

* (formed in the average over a pulse 
period), e.g. (bc) and (ba) as shown in Fig.6a. Accordingly, in 
contrary to the Two-Vector Scheme, for the Three-Vector Scheme 
the sign of ϕ1 has to be considered. Based on the geometrical 
relations of  Fig.6 we have for the additional turn-on times for φ1≥ 0 

)6/cos(
)6/cos(

3
2

)6/cos(
)sin(

3
2

2

1*
),101(

2

1*
),010(

πϕ
πϕ
πϕ

ϕ

−
+

⋅=

−
⋅=

MIdi

MIdi

bc

ab

            (14) 

Where the negative current pulse iB has to be assigned to (ab). In 
analogy for φ1< 0 
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is valid where the negative current pulse iB has to be assigned to 
(cb) . 
 
Applying pulses with turn on times defined by (14), (15) in each 
second pulse half period (cf. Fig.9 of [3]) and merging the current 
pulses occurring for the DC link voltage level which is present in 
pulse half periods (in the case at hand uab) finally results in the pulse 
pattern shown in Fig.7.  
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Due to the third DC link voltage level utilized for the reactive input 
current formation, only two current pulses can be merged. The total 
turn-on time of the active switching states then results as  
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Numerically evaluating (16) including the foregoing determination 
of the maxima within the ϕ1-ϕ2-plane for each M12 results in the 
limit represented by a dotted line in Fig.8. Again, the analytically 
determined transfer limit coincides with the numerical calculation.    

Based on the considerations of Section 2.A we receive for the 
Current Limited Operating Range 
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and for the Voltage Limited Operating Range 
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The transition between the operating ranges is defined by  
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Fig.8:  Analytically derived and numerically calculated (dotted line) transfer 
limits of the Three-Vector Scheme. The transition from the current limited  
to the voltage limited operating range (at M12,Lim,3V ) takes larger influence on   
maximum reactive current transfer ration than for  the Two-Vector Scheme. 
 
The critical position ϕ1,crit,3V is defined for the Current Limited 
Operating Range by 
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as graphically shown in Fig.9a.  
 

 
 

Fig.9: Dependency of the critical angle values ϕ1,crit,3V (a) and ϕ2,crit,3V (b) of 
the Three-Vector-Scheme on M12. Changing from the current limited 
operating range (M12 = 0…0.638) to the voltage limited range (M12 = 
0.638…1) clearly affects both angle values what identifies a maximum of 
dtot,3V in the ϕ1-ϕ2-plane. The analytical expression (20) for ϕ1,crit,3V  coincides 
with the numeric results.  
 
• Current Limited Operating Range  (M12 = 0…M12,Lim,3V) 

Considering the space vector diagram (cf. Fig.6), the operating 
limit at M12 ≈ 0 again will be given for i1q

* located symmetrically 
in the middle of the current forming vectors (bc) and (ba), i.e. for 
ϕ1= π/6. Furthermore, again ϕ2 =π/3 (or ϕ2 =0)  are resulting in a 
minimum value of |± iB| and/or in a minimum current space 
vector magnitude. Therefore, for M12 = 0 the maximum 
achievable MI is defined by cos(π/6). cos(π/6) =  3⁄4. 
 

• Voltage Limited Operating Range  (M12 = M12,Lim3V …1) 
The voltage limiting condition is given for ϕ1,crit = 0 and ϕ2,crit 
=π/6. In this case no freewheeling interval remains for M12 = 1 
and as a consequence the current forming pulse iB which would 
occur for the additional (third) DC link voltage level cannot be 
applied anymore. Therefore, no reactive input can be formed at 
full modulation.    

 
C.  Optimum Combination of the Two- and Three-Vector Scheme   
 

For Sections 2.A and 2.B the Two-Vector or Three-Vector Scheme 
has been applied within the whole mains and load period, i.e. within 
the whole ϕ1-ϕ2-plane.  
However, as shown in the following, within a certain range of M12 
advantageously different schemes could  be use for defined areas of 
the ϕ1-ϕ2-plane. 

Aiming for a maximum MI the modulation scheme with the  
lower associated total turn-on time can be denoted as optimal,   
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The evaluation of (21) is graphically shown in Fig.10 for varying 
M12. There, dark areas marks are indicating dtot,2V = dtot,3V, and 
therefore the boundaries of the optimum domains of the two 
schemes. In addition the maxima of dtot,2V, dtot,3V  and dtot,opt are 
identified. Starting with M12 = 0.65 (a) the Three-Vector-Scheme 
resides in the Voltage Limiting Operating Range. The global 
application of this scheme is still optimal. But with increasing M12 
((b), (c)) the utilization of the Two-Vector Scheme in the vicinity of 
plane center becomes advantageous. Due to the fact that the 
maximum of dtot,3V, which was formerly defining the operating 
limit, is located at the plane center point (ϕ1,crit,3V=0, ϕ2,crit,3V =π/6) 
where the Two-Vector Scheme provides lower total turn-on times, 
the operating limit will be extended by using this scheme. This can 
be seen clearly from Fig.11. As can be seen from (b) - (d),   in the 
vicinity of the maximum of the Three-Vector Scheme the Two-
Vector-Scheme showing a lower dtot,2V  is applied and vice versa.  
When approaching full modulation (d), the domain of the Three-
Vector-Scheme vanishes and for M12 ≈ 1 the Two-Vector-Scheme 
constitutes the optimum modulation scheme. 
 

Fig.7:  Final pulse pattern 
resulting for the „Three-Vector 
Scheme“ after merging input 
current pulses occurring for 
u=uab  being present in both 
halves of the original pulse 
period depicted in Fig.9 of [3]. 



 
 

Fig.10: Domains within the ϕ1-ϕ2-plane defining the optimum application 
areas of the Two-Vector or Three-Vector Modulation Scheme  with respect 
to minimum dtot,act (for short denominated as dtot in the following) for 
different values of M12. The dark color marks areas where dtot,2V = dtot,3V  is 
valid. Remark: The maxima of dtot for the Two-Vector, Three-Vector, and 
the Optimal-Scheme are occurring symmetrically to the plane center point. 
For the sake of clarity, the maxima are only marked in the positive ϕ1–half 
plane.  Legend: Ⅹ: maximum of dtot,2V ; ▲: max. of dtot,3V ;  ⃝: max. of  dtot,opt. 
 
 

 
Fig.11: Comparison of the operating limits of the modulation schemes. Up 
to M12,Lim,2V the Three-Vector-Scheme results in the maximum value of MI. 
From there, MI can be increased by changing to the Two-Vector Scheme 
within sections of the ϕ1-ϕ2-plane as shown in Fig.10. For full output 
voltage (M12 = 1) the MI limit is defined by the Two-Vector Scheme. 
 
 

 
Fig.12:   Above M12,Lim,2V numerical analysis proves the maximum reactive 
current transfer limit achieved by optimum modulation to return to the limit 
(17) valid for the Three-Vector-Scheme in the current limited operating 
range. Within the small interval between M12,Lim,3V and M12,Lim,2V  (18) 
determines the limit.  Furthermore shown is the theoretical limit of reactive 
current transfer for the CMC according to [4].    
 

 
Fig.13: Critical angles ϕ1,crit,opt (a) and  ϕ2,crit,opt (b) of the optimum 
modulation in dependency on M12 . In accordance with Fig.12 and Fig.10a 
the Three-Vector-Scheme voltage limit is reached at M12,Lim,3V. For further 
increasing M12, M12,Lim,2V is reached where again a transition to the critical 
angle values of the Three-Vector-Scheme in current limited operation occurs. 
 
 
As shown in  Fig.12, the numerically calculated operating limit of 
optimum modulation returns above M12,Lim,2V  to the limit defined by 
(17) for the Three-Vector-Scheme in current limited operation (cf. 
also Fig.13).   
 
Finally, it should be pointed out, that the implementation of the 
proposed optimum modulation scheme could be achieved without 
significantly increasing the realization effort, since all turn-on times 
have to be calculated for implementing a modulation algorithm. 
Therefore, only the sums (8) and (16) have to be compared and the 
modulation scheme showing the lower total turn-on time has to be 
selected.  
   
 
 
 

III. REACTIVE INPUT CURRENT COMPONENT 
FORMATION FOR PURELY ACTIVE LOAD

 (Φ 2= 0) AT FULL OUTPUT VOLTAGE
 

A. Two-Vector Modulation Scheme for Purely Active Load 
 

For the following considerations the load is assumed to draw a 
purely active current, i.e.Φ2 =0. Considering this output phase 
current displacement, the space vector diagram Fig.2 is still valid. 

Contrary to Φ2 =±π/6 now the current in output phase (−C) 
shows the largest instantaneous value. Accordingly, in the formulas 
for the additional turn-on times only the phase shift of ϕ2 in the 
cosine terms of the denominator has to be adapted   
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Fig.14 shows a pulse period of the basic hybrid modulation scheme 
comprising an output voltage/active input active current forming 
half period and a subsequent half period dedicated to the formation 
of a reactive input current component. This basic scheme is largely 
equivalent to the scheme employed for purely reactive load (cf. 
Fig.6 in [3]). As a main difference here in total only two different 
output phase currents are switched into the DC link. Therefore, the 
merging of current pulses results in a partial pulse compensation. 

E.g. in Fig.14 the pulse iC occurring for u=uab in the second 
pulse half period overcompensates the neighboring pulse (−iC) of 
the first half period and reduces the total turn-on time. The second 
pulse of the reactive current forming interval (−iC) occurring for 
u=uac cannot be compensated but has to be added to the pulse (−iC) 
of the voltage forming interval and therefore increases the total 
turn-on time.  This finally results in the pulse pattern shown in 
Fig.15.   

 



 
Fig.14:  Hybrid modulation for reactive input current formation in case of 
purely active load. The first half of each pulse period is dedicated to the 
formation of the output voltage and the active input current component. 
Subsequently the reactive input current component is formed in the second 
pulse half period. In both half intervals only two different input current 
vectors ((ac) and (ab) in the case at hand) are applied and/or two line-to-line 
input voltages are switched into the DC-link (u= uac or uab). Accordingly, 
the modulation scheme is denoted as „Two-Vector Scheme for Purely Active 
Load“. No volt seconds are added to the output voltage (cf. e.g. uBC) within 
the second half of the pulse period.  
 

      

 
For Fig.15 we have for the total turn-on time of the active switching 
states 
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For geometrical reasons, (23) is asymmetric in ϕ1 =−π/6…π/6 and 
shows a clear minimum in the negative ϕ1-half plane.The numerical 
analysis of (23) yields the operating limit of the Two-Vector-
Scheme for Purely Active Load depicted in Fig.21 and the critical 
positions ϕ1,crit  within a mains period shown in Fig.16. 

 

 
 

• Current Limited Operating Range   
ϕ2,crit,2V,act= π/6  (derivation analogous to Section 2.A). 
For M12 ≈ 0: ϕ1crit,2V,act, = 0 (like in Section 2.A) 

 MI = 1⁄2 √3/2  (like in Section 2.A). 
 

• Voltage Limited Operating Range   
ϕ1,crit,2V,act= π/6  (like in Section 2.A) 
ϕ2,crit,2V,act= π/6  (derivation analogous to Section 2.A). 

 
The critical position within the output period is constant  
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An analytical description of the voltage limited operation results in  
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for full modulation. 
 

 
B. Three-Vector Modulation Scheme for Purely Active Load 

 
Considering Φ2 =0, again the space vector diagram in Fig.6 is 
basically valid and yields the additional turn-on times as follows. 
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Fig.17 shows a basic pulse period of the Three-Vector Scheme for 
Purely Active Load. Considering the (partial) pulse compensation, 
Fig.17 is finally transferred to the pulse pattern depicted in Fig.18. 
It has to be pointed out, that the pulse compensation is not possible 
for ϕ1<0, therefore in this case no reduction of the total turn-on time 
results, cf. (29).   
 
According to Fig.18 we have 
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Fig.15:   Final 
pulse pattern 
resulting for 
the „Two-Vec-
tor-Scheme for 
purely active 
load“  after 
merging the 
output voltage 
and the input 
reactive cur-
rent forming 
halves of the 
pulse period 
depicted in 
Fig.14.  

Fig.16 Critical 
mains phase angle 
ϕ1,crit,2V,act. After the 
transition to the 
voltage limiting 
range (M12 > 1/√3) 
the critical mains 
angle stays con-
stant at ϕ1,crit,2V,act

=π/6.  



 
 

Fig.17:  Hybrid modulation denoted as „Three-Vector Scheme for Purely 
Active Load“. In total three different input current vectors and/or DC-link 
voltage levels (ac), (ab), (bc) are employed within each pulse period. 
Remark: The pulse pattern shown is valid for ϕ1>0. In order to point out the 
main difference in case of ϕ1<0 the DC link current pulses are also shown 
with inverse polarity. Moreover, in this case, the DC link voltage labels uac 
and uab have to be exchanged and ubc has to be replaced by ucb (cf. Fig.18). 
 
 

 
 
 

Fig.18: Final pulse pattern resulting for the „Three-Vector Scheme for 
Purely Active Load “. For ϕ1>0 (a) input current and/or output voltage 
pulses occurring for u=uab in the first and second half of the pulse period 
depicted in Fig.17 with inverse polarity are partially compensating each 
other. In contrary, for ϕ1<0 (b) the pulses occurring for the common DC 
link voltage level u=uac show the same polarity. In consequence, no 
reduction of the total turn-on time can be achieved.  Remark: Changing the 
sequence of the voltage pulses forming u as compared to Fig.17 allows to 
reaching a subsequent level of u by changing only the switching state of 
either the upper or the lower half of the converter input stage and therefore 
what minimizes the control complexity. 
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As for ϕ1<0 in principal no turn-on time reduction is possible, 
dtot,3V,act according to (29) is always lager than the value resulting 
from (28), a pronounced maximum of dtot,3V,act  is located in the 

negative ϕ1-half plane. This asymmetry is also documented by the 
dependency of  ϕ1,crit,3V  shown in Fig.19. 
 

 
 

Fig.19:  Critical position ϕ1,crit,3V,act within a mains period. As the modulation 
scheme does not facilitate a reduction of the total turn-on time for ϕ1<0 the 
maximum of dtot,3V,act  associated with ϕ1,crit,3V,act is located in the  negative ϕ1-
half plane. In contrary to all other modulation schemes discussed above, the 
modulation transfers continuously from  current  to the voltage limited 
operation. 
 
• Current Limited Operating Range   

ϕ2,crit,3V,act= π/6  (derivation analogous to Section 2.B). 
For M12 ≈ 0:   ϕ1,crit,3V,act = −π/6 

                           MI = 3⁄4      (like in Section 2.B). 
 

• Voltage Limited Operating Range   
ϕ1,crit,3V,act= 0     (like in Section 2.B) 
ϕ2,crit,3V,act =π/6  (like in Section 2.B). 

 
The modulation only operates in the current limited range. The 
critical position within the output period remains constant for 
changing M12 at

  
    6/,3,,2 πϕ =actVcrit  .                (30) 
 
 
 
C. Optimum Combination of the Two- and Three-Vector Scheme 

for Purely Active Load   
 
 

 
 

Fig.20:  Domains within the ϕ1-ϕ2-plane defining the optimum application 
areas of the Two-Vector (2V) or Three-Vector (3V) Modulation Scheme  with 
respect to minimum dtot,act  (for short also denoted as dtot in the following) for 
different values of M12 and purely active load. In contrast to purely reactive 
load (cf. Fig.10) the function dtot,opt,act is not symmetric in ϕ1   and shows 
symmetry only concerning ϕ2. The Two-Vector Scheme is advantageous for 
negative values ϕ1 while the Three-Vector Scheme provides allows to 
achieve minimum values of dtot,act for ϕ1>0. Therefore, the location of the 
boundary separating the application areas is moving for increasing M12 from 
left hand side to the right side. Legend: Ⅹ: maximum of dtot,2V,act ; ▲: max. of 
dtot,3V,act ;  ⃝: max. of  dtot,opt,act. 



Due to the asymmetry of both schemes, i.e. the low values of 
dtot,2V,act occurring for the Two-Vector Scheme for ϕ1<0  and the low 
values of dtot,3V,act given for the Three-Vector Scheme for ϕ1>0  the 
optimum combination allows a larger extension of the operating 
range as compared to operation with purely reactive load (cf.  
Section 2.C). This is clearly documented by Fig.20 and Fig.21. 
 
For M12 = 0.50 (a) the global application of the Three-Vector-
Scheme will not reduce the reactive current component formation 
capability, since the Three-Vector-Scheme still provides the 
minimum total turn-on time (i.e. dtot,opt,act,max  = dtot,3V,act,max). With 
increasing M12 (cf. (b), (c) in Fig.20) the Two-Vector-Scheme has to 
be employed in the vicinity of the maximum of dtot,3V,act  and the 
Three-Vector-Scheme is utilized only in the area containing the 
maximum of dtot,2V,act what results in an extension of the operating 
limit as compared to only employing the Three-Vector Scheme. 
When approaching full modulation (cf. (d) in Fig.20), the domain 
of the Three-Vector-Scheme still is present resulting in an extended 
operating range for M12 = 1 as compared to solely employing the 
Two-Vector Scheme.   
 

 
 

Fig.21:  Comparison of the operating limits of the modulation schemes. The 
optimal modulation is identical to the Three-Vector Scheme up to 
M12,Lim,2V,act. From there, the reactive input current formation capability is 
increased by locally employing the Two-Vector-Scheme (cf. Fig.20). For full 
output voltage (M12 = 1) the optimal modulation allows to exceed  the limit 
of the Two-Vector-Scheme (MImax,opt,act = 0.1). 
 
An analytical investigation of the Two- and Three-Vector Scheme 
for voltage limited operation confirms the numerically gained value 
for the operating limit at M12 = 1 shown in Fig.21  
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Taking into account the active input current component given at full 
output voltage   
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the maximum input current phase displacement angle which could 
be realized for Φ2=0 and full output voltage is defined by  
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This indicates that the theoretical operating limit of the CMC, 
Φ1,max,opt,act|M12=1=0, specified in [4] for identical operating 
conditions possibly could be extended by advanced CMC 
modulation concepts.  
 
 
 
 

IV. DIGITAL SIMULATION AND VERIFICATION
 
The proposed modulation schemes and the calculated operating 
limits have been verified by digital simulation using SIMPLORER 
(cf. Fig.22).  

E.g., for M12=1.0 and MI=0.066  (Î1q = MI . Î2, cf. (5)) the 
amplitude of the reactive component īa,reactive of input phase current 
īa and/or the input current phase displacement (displacement of ua 
and īa) are showing the expected values (Φ1=−π/41). It should be 
pointed out that the DC link current i exhibits characteristic 
negative spikes which are due to the low values of δ(110),ab in the 
vicinity of ϕ1=π/6, π/2, 2π/3, etc. as shown in Fig.15. 

 
 

  

  

 
 

V. CONCLUSIONS
 

In this paper an optimum combination of the Two- and Three-
Vector Modulation of the SMC for maximum utilization of a purely 
reactive load current for reactive input current generation has been 
proposed. 

Furthermore, it has been shown that the combination of both 
schemes is applicable also for purely active load, i.e. for Φ2=0. 
There, the optimum combination of both schemes significantly 
extends the SMC operating area in the upper modulation range and 
facilitates the formation of a reactive input current component 
and/or a current transfer ratio of MI ≈0.1 even at M12 =1 where 
modulation methods known for the CMC [4] are restricted to 
MICMC=0.  
 
Further research will be concentrated on the extension of the 
optimum modulation schemes to general load conditions i.e. to  
Φ2=0...90°. Based on this, the operating limits of the conventional 
modulation and the Two- and Three-Vector Modulation schems will 
be compared and the advantageous application areas maximizing 
the SMC operation range will be clarified.  
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