
Abstract — A three-phase PWM rectifier and a three-phase PWM 
inverter are coupled via two four-quadrant full-bridge converter cells 
and a high-frequency isolation transformer. By employing a third 
transformer winding and further full-bridge cell battery energy storage 
is incorporated into the power transfer between rectifier and inverter 
resulting in a Three-Port UPS concept. The phase shift control of the 
power flow between the ports is analyzed for square-wave operation of 
the full-bridge cells. Furthermore, the utilization of the degrees of 
freedom of the system control, i.e. the extension to duty cycle control for 
optimizing the system behavior is discussed and control laws ensuring 
minimum overall system losses are derived. Finally, a control-oriented 
converter model is proposed and the decoupled control of the power 
flow of the ports is treated briefly. All theoretical considerations are 
verified by simulations using PSIM. 

I. INTRODUCTION 

Highly reliable three-phase on-line uninterrupted power supply 
systems (UPS) are formed by back-to-back connection, i.e. DC side 
coupling of a mains-side voltage source rectifier and a load-side 
voltage source inverter [1]. There, the battery energy storage is 
directly connected to the DC link or coupled via a DC/DC converter 
in order to allow a control of the charging or discharging current and 
a compensation of battery voltage changes. Furthermore, for safety 
reasons and voltage level adaption in general a 50/60Hz isolation 
transformer is employed on the input or output side which, however, 
constitutes a significant drawback concerning volume/weight, costs 
and efficiency. 

In this paper a novel UPS concept with high frequency isolation of a 
three-phase PWM rectifier stage (system/port 1),  a three-phase 
PWM inverter stage (system/port 2) and a battery energy storage 
(system/port 3) is proposed, [2] (cf. Fig.1). There, port 1, port 2 and 
port 3 are coupled via three four-quadrant full-bridge converter cells 
operating in phase-shift mode and a single three-winding 
transformer. Accordingly, the system will be denoted as Three-Port 
UPS in the following. 

For realizing the three-phase rectifier and inverter function of the 

system 20 (6+4+4+6) power transistors with anti-parallel diodes 
have to be employed. Therefore, the realization effort is lower than, 
e.g. for a three-phase high-frequency link AC/AC matrix converter 
comprising 24 transistors and diodes [4]. As further advantage one 
has to point out the continuous shape of the input and output 
currents and the decoupling of the mains and the load concerning 
power and voltage fluctuations in case sufficient DC link 
capacitance C1 and C2 is provided for the rectifier and/or the inverter. 
Alternatively, C1 and C2 could be realized as foil capacitors 
ensuring only a constant DC link voltage level for switching 
transients. 
The system shown in Fig.1 in general allows a bidirectional energy 
conversion between two three-phase voltage systems and a DC 
voltage source and therefore is of potential interest also in 
connection with future distributed generator of electric energy. 
There, the mains could, e.g. be formed by a wind turbine or a 
variable frequency generator powered by a micro turbine where the 
battery storage could compensate power fluctuations of the 
regenerative energy sources. Also, further other storage elements 
like flywheels or SMES or a fuel cell or photovoltaic generator 
could be incorporated in parallel by individual full-bridge converter 
cells and related transformer windings. An interesting application 
area of such X-port UPS-type converter system would e.g. be future 
intelligent nodes of the energy distribution system which also could 
be extended to a power quality control centre [5] featuring 
symmetrization of unbalanced loads and active filtering of mains 
voltage or load current harmonics. 
The control of the power flow in the three-port system is in the 
simplest case by proper phase shift of the individual full-bridge cells 
operating in square-wave mode. In Section II the system control 
characteristics are determined based on the equivalent circuit of a 
three-winding transformer [6] and the dependency of the power 
transfer between two full-bridge cells on the phase displacement of 
the control signals. There, in a first step a turns ratio of 
N1:N2:N3=1:1:1 is assumed and the PWM rectifier, the PWM 
inverter and the voltage-type energy storage are replaced by equal 
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Fig.1: Proposed three-phase three-port high-frequency link converter (Three-Port UPS, [2]). The high frequency coupling of multiple four-quadrant full-bridge 
converter cells via a single transformer has been shown in principle in [3] (cf. Fig.8 in [3]), however, no procedure for controlling the system has been given there. 
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voltage sources U1=U2=U3; subsequently the considerations are 
generalized to different DC voltages. It is shown that a zero net 
power flow can be achieved for one port while power is transferred 
between the two other ports. The introduction of duty cycle control 
for minimizing the overall system conduction and switching losses 
is discussed in Section III. The converter control using a decoupling 
network is treated briefly in Section IV. Finally, in Section V the 
theoretical considerations are verified by simulations using PSIM. 

II. CONTROLLABILITY OF THE POWER FLOW  
IN THE THREE-PORT CONVERTER 

A. Equivalent Circuit of a Three-Winding Transformer  

The equivalent circuit of a three-winding transformer given in [6], is 
shown in Fig.2(a) where Lm is the effective magnetizing inductance 
and T1 and T2 are two ideal transformers with turn ratios 1:N2 and 
1:N3. The transformer leakage inductances which are determining 
the power transfer in connection with the phase displacement of the 
individual full-bridge converter cell control signals are represented 
by L1, L2, and L3. 
The parameters of the equivalent circuit can be derived from the 
measured values of the self inductances Z1, Z2, Z3 and the mutual 
inductances M12, M13, and M23 of the transformer windings 
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B. Direction of the Converter Power Flow 

For limiting to the essentials we represent the output voltages of the 
full-bridge cells by square wave voltage sources with a duty cycle of 
0.5. Furthermore, we assume N2 and N3 to be equal to 1 and neglect 
the transformer magnetizing current and/or magnetizing inductance. 
The resulting equivalent circuit of the proposed system is shown in 
Fig.2(b). The phase shift of control signals of two full-bridge cells 
and/or of the square wave voltage sources u1 and u2 is denoted as φ2 
in the following; accordingly, φ3 denotes the phase displacement of 
u1 and u3. There, φ2 and/or φ3 are defined as positive when u1 is 
leading u2 and/or u1 is leading u3. The control range of φ2 and φ3 is 
from -π/2 to π/2. 

The three-port converter can be simplified to a two-port converter if 
the third port is open. Based on [3] we then have for the power flow 
between two full-bridge phase-shift controlled converter cells (cf. 

Fig.2(d)) 
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where V1 and V2 are the DC voltages of the converters generating u1 
and u2 and Ts denotes the switching cycle. According to (2) the 
amount and direction of the power flow is determined by the phase 
shift φ2. 
This is also immediately clear from a phasor diagram of the 
fundamentals of the voltages and currents which is depicted in Fig.3. 
The fundamental power transferred from port 1 and/or u1 to port 2 
and/or u2 is 
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where Û1=4/πV1, Û2=4/πV2, Û12 is the absolute value of u12=u1−u2, 
ω=2π/TS and α denotes the phase displacement of u1 and the current 
i12 which is oriented perpendicular to u12. For φ2 > 0 (cf. Fig.3(a)), 
and/or in case u1 is leading u2, α is smaller than π/2. Therefore, we 
have P12>0, the power flow is physically oriented from port 1 and/or 
u1 to port 2 and/or u2 and reverses for φ2 < 0 since α then is larger 
than π/2 (cf. Fig.3(b)). 

The Y-equivalent circuit depicted in Fig.2(b) can be transformed 
into a D-equivalent circuit [7] shown in Fig.2(c) which allows to 
determine the resulting power flow of the three-port system by 
superposition of the power transfer of  three two-port systems u1,u2,  
u1,u3,  and u2,u3. E.g., for φ2 > 0, φ3 > 0 and φ2 > φ3 (cf. Fig.4 (a))  the 
power flow is from u1 to u2, u1 to u3 and u3 to u2 as φ2 > φ3. Therefore, 
u1 is acting as a source and u2 is consuming power. Dependent on the 
relation of φ2 and φ3 and of V1, V2 and V3, Port 3 and/or u3 can be 
sinking or sourcing power or remain at zero power. 
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Fig.2: (a) Equivalent circuit of a three-winding transformer; (b) Y-equivalent circuit of the proposed converter used for analyzing the dependency of the power transfer 
between the ports on the control signal phase displacements; (c) ∆-equivalent circuit of the three-port system; (d) equivalent circuit for studying the power flow between 
two ports when the third port is opened. 
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Fig.4: Equivalent circuit for studying the power flow between three ports. The direction of power flow is only determined by φ2, φ3, not by V1, V2 and V3. 
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Fig.3: The phasor diagram of the fundamentals of the voltages and currents when 
the third port is open 



In summary, a power transfer is possible in any direction between 
any ports simultaneously and the direction is only determined by φ2, 
and φ3 (cf. Fig.4). 

C. Control Leaving One Port at Zero Average Power 

An important function of an UPS system is to directly supply power 
from the mains to the load without charging or discharging the 
battery energy storage. For the three-port UPS this cannot be 
realized at low battery  voltage even if all power transistors of the 
battery port  full-bridge cell are remaining in the off-state as the 
anti-parallel free-wheeling diodes would be forced into conduction 
by high output voltages of the mains or load port full-bridge cells. 
Therefore, φ2 and φ3 have to be selected properly in order to achieve 
P3 = 0 and a given value of P1 = −P2 = P (since the sum of the power 
of three voltage sources has to be zero, P1+P2+P3=0, if losses are 
neglected). 

As the currents in the leakage inductances are directly the currents 
of the voltage sources of the Y-equivalent circuit, the following 
considerations are referring to Fig.2(b). Here, again φ2 > 0, φ3 > 0 
and φ2 > φ3 is assumed. The key waveforms resulting in P3 = 0 are 
shown in Fig.5 for V1=V2=V3 and for the general case of different 

DC voltage levels V1, V2, V3 in Fig.6. According to the law of 
superposition, u0 contained u1, u2, u3 is 
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For the power flow of the ports we then have 
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From (5) now the relation of P and φ2 and of φ2 and φ3 can be 
derived under the side condition of P3=0 and P1=−P2=P. As shown 
in Fig.7 and Fig.8 for V1=500V, V2=400V, V3=360V, P1=−P2=5kW, 
P3=0, L1=L2=L3=100µH, and fs=20kHz, there are two solutions for 
φ2 and φ3. As a higher phase shift φ2 and φ3 result in a higher peak 
value of the current in the corresponding leakage inductance and/or 
in higher conduction and switching losses the lower phase shift 
values φ21 and φ31 which have to be selected for the system control. 
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Fig.7: Phase shift φ2 for achieving P1=−P2=5kW and P3=0. Operating parameters: 
V1=500V, V2=400V, V3=360V, L1=L2=L3=100µH, and fs=20kHz. 
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Fig.6: Key waveforms for P3 = 0 and/or P1 =−P2 =P for differing levels of the 
full-bridge converter cell DC voltages V1, V2, V3. 
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Fig.5: Key waveforms for achieving zero net power flow to port 3 assuming equal  
levels of the full-bridge converter cell  DC voltages, i.e.V1=V2=V3=Ud . 
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Fig.8: Dependency of phase shift φ3 on φ2 for achieving zero net power flow to 
port 3, i.e. P3=0 (cf. Fig.7). Operating parameters: as for Fig.7. 



III. MINIMIZATION OF THE OVERALL SYSTEM LOSSES 

A. Introduction of Duty Cycle Control 

In order to gain degrees of freedom for minimizing the overall 
system losses, duty cycle variation of the full-bridge converter cell 
output voltages u1, u2 and u3 could be introduced in addition to phase 
shift control as shown in Fig.9. There, the control range of δ1, δ2 and 
δ3 is from 0 to π/2. 

B. Zero Circulating Power  
The power transferred from u1 to u2, from u2 to u3 and from u3 to u1 
will be denoted as P12, P23 and P31 in the following. Aiming for 
minimizing losses a circulation of power inside the system which 
would not contribute to the power flow of the ports has to be 
prevented, i.e. 
 P12+P23+P31 = 0 (6) 
has to be ensured. Considering P2 = P21+P23 and P3 = P31+P32, we 
have for P12, P23, and P31 in dependency on P2, P3 with (6)  
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For the sake of simplicity the further considerations are restricted to 
fundamentals of the voltages and currents. Furthermore, 
L12=L13=L23, φ2>0, φ3>0 and φ2>φ3 is assumed. The corresponding 
phasor diagram is shown in Fig.10 where u1 defines the orientation 
of the real axis 
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We then have for P12 
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Considering the phase displacement φ2 of u1 and u2 (cf. Fig.9) and/or 
of u1 and u2, u2 can be expressed as (cf. Fig.10) 
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Accordingly, u12 formed by u1 and u2 is 
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Introducing the phase displacement α of u1 and i12, u12 which is 
leading i12 by π/2 can be alternatively formulated as 
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Combining (11) and (12) results in  
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Considering (13), the power flow P12 (cf. (9)) now can be 
represented as 

 )sin(ˆˆ

2
1cosˆˆ

2
1

22
12

1
12

12

1
12 φ

ω
α

ω
U

L
UU

L
UP ==  (14) 

Taking finally into account that the area S∆OAB of the triangle ∆OAB in 
Fig.10 is  

 )sin(ˆˆ
2212

1 φUUS OAB =∆  (15) 

the power transferred between two ports in general is proportional to 
the area of the triangle defined by the phasors of the voltages of the 
ports and is inversely proportional to the equivalent impedance 
and/or inductance connecting the ports (cf. Fig.2c), 
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Accordingly, P13 and P32 can expressed as 
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where S∆OAC denotes the area of the triangle ∆OAC and S∆OBC denotes 
the area of the triangle ∆OBC. Considering P12+P23+P31=0, and  
L12 =L13 =L23 as assumed above, (17) yields in combination with 
(16) 
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Simplifying (18), results in  

 OACOBCOAB SSS ∆∆∆ +=  (19) 

Accordingly, for preventing circulating power flow, the head of u3 
shown as point C in Fig.10 has to be located on the line AB and/or 
u12 and u13 have to be aligned what results in an alignment of i12, i13, 
and i1=i12+i13 what considerably simplifies the closed-form system 
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Fig.10: Phasor diagram of the fundamentals of the system voltages and currents.



description. 

C. Range of φ2 and φ3 

Substituting ω=2π /Τs, Û1=4/π⋅V1cos(δ1), and Û2=4/π⋅V2cos(δ2) in 
(14), P12 can be represented as  
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Analogously, we have for P13 and P23 
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Referring to (20) and (21) the duty cycles δ1, δ2, and δ3 now can be 
expressed as 
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For controlling the system 5 degrees of freedom, i.e. the phase 
displacements φ2, φ3, and the duty cycles δ1, δ2 and δ3 are available. 
Defining the power flow of two ports, e.g. P2 and P3 and ensuring 
zero circulating power two degrees of freedom are remaining, i.e. 
the converter characteristics can be expressed in dependency of φ2 
and φ3.  
Taking into account the restriction of the argument of an inverse 
cosine function to [−1, 1], (22) results in a limitation of the operating 
range of the converter and/or in a limitation of the admissible range 
of φ2 and φ3. E.g., there follows considering δ1(φ2, φ3),  
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The corresponding range of φ2,φ3 is denoted as Areaδ1 in the 
following (cf. Fig.11). In analogy, Areaδ2 and Areaδ3 are resulting 
from δ2(φ2, φ3) and δ3(φ2, φ3). Considering all restrictions, the 
system operation finally has to be restricted to the AreaA defined by 
the intersection of Areaδ1, Areaδ2 and Areaδ3. 

D. Minimization of Overall System Losses 

For realizing the full-bridge converter cells in IGBT technology for 
a rated power in the range of 5…10kW, the system switching and 
conduction losses could be derived based on [10]. There, we have 
for the turn-on and turn-off energy loss of a power transistor and the 
turn-off energy loss of a power diode  
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where the indices S, D denote whether the transistor or the diode is 
considered, and u and i are the voltage and the current being 
switched. The coefficients Ki are determined by measurements and 
specified in [10]. 

For the conduction losses of the valves we have again according to 
[10] 

 2
//,/ rmsDSDSFDS iriUp ⋅+⋅=  (25) 

where ī denotes the average value and irms is the rms value of the 
transistor or the diode current. 

The overall system losses resulting for, e.g. P1=4kW, P2= −3kW, 
P3= −1kW, V1=500V, V2=400V, V3=360V, L1= L2=L3= 100µH, and 
fs = 20kHz are shown in Fig.12. There, operating point A results in 
minimum overall power semiconductor losses. This is clearly 
verified by operating point B which is characterized by significantly 
higher current amplitudes and higher voltage and current phase 
displacements and/or significantly higher losses (cf. Fig.13). 

Fig.13 also justifies the approximation of the actual current 
waveforms with the fundamentals (cf. (b) and (d)). Accordingly, the 
calculation of φ2 and φ3 based on (22) allows an accurate pre-control 
the system power flow (cf. Fig.14). 

π
2
π0

6
π

3
π

3
2π

6
5π

π

2
π

0

6
π

3
π

3
2π

6
5π

3δArea

1δArea

2δArea

AArea

)rad(2φshiftPhase

)
ra

d
(

3φ
sh

ift
P

ha
se

 
Fig.11: Operating AreaA, i.e. admissible range of phase shift φ2 and phase shift φ3 
resulting form (22). Assumed operating parameters: P1 = 4kW, P2 = −3kW, 
P3= −1kW, V1=500V, V2=400V, V3=360V, L1=L2=L3=100µH, and fs=20kHz. 
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Fig.12: Overall system losses in dependency of φ2 and φ3. Assumed operating 
parameters: P1 = 4kW, P2 = −3kW, P3= −1kW, V1=500V, V2=400V, V3=360V, 
L1=L2=L3=100µH, and fs=20kHz. 
 



IV. CONTROL STRATEGIES 

As mentioned in Section 3.C, two degrees of freedom, i.e. φ2 and φ3 
are available for the system control. Accordingly, the system could 
be considered as a two input (φ2 and φ3) and two output (P2 and P3) 
control system. 
The power P2 of port 2 is the sum of P21 (cf. (20)) and P23 (cf. (21))  
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Assuming that system operation is close to point A is ensured by 
proper pre-control (cf. Fig.12, where φ2A and φ3A is, and δ1A, δ2A, δ3A 
could be determined based on (22)) the controller only has to 
slightly adjust φ2 and φ3 in a given operating region. Therefore, for 
deriving a control-oriented system model, (26) can be linearized at 
the desired operating point A resulting in 
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In analogy, linearizing P3 at operating point A yields 
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In summary, we have for the small signal model of the system   
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The interaction of the control loops (29) can now be eliminated 
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Fig.13:  Actual time behavior of  u1, u2, u3 and i1, i2, i3  (cf. (a) and (c)) and  of  the fundamental approximation of i1,1, i2,1, i3,1 of i1, i2, i3  (cf. (b) and (d)) for 
operation point A (cf. (a) and (b)) and operation in point B (cf. (c) and (d)) in Fig.12; Assumed operating parameters: P1=4kW, P2=−3kW, P3 =−1kW, V1 =500V, 
V2=400V, V3=360V, L1 =L2=L3=100µH, and fs = 20kHz. One has to note, that operating point A in general is characterized by low switching losses. 
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using a decoupling network H (cf. e.g., [11]). The resulting control 
structure is depicted in Fig.14. Based on 
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the decoupling matrix can be found as 
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V. SIMULATION RESULTS 

The above theoretical considerations have been verified by digital 
simulations using PSIM based on the circuit schematic shown in 
Fig.15 assuming the following operating parameters and component 
values: V1 = 500V, V2 = 400V, V3 = 360V, L1 = L2 = L3 = 100µH,  
fs = 20kHz, C1 = C2 = C3 = 2µF. 

The simulated system control behavior is shown in Fig.16. At t=0 
the power reference signals are P2

*=−3kW and P3
*=−1kW (a 

negative power value indicates that power is absorbed by the 
corresponding port and/or converter cell, in the case at hand power 
is delivered from port 1 to ports 2 and 3). The power reference signal 
P2

* is stepped to −4kW at t=0.02s and P3
* is stepped to 0 at t=0.07s. 

The control shows excellent dynamics and only a weak 
cross-coupling of the control loops is remaining. A detailed 
description of the dynamic modeling of the system and the 
extension of the basic control structure to controlling V2 and the 
battery charging current I2 will be discussed in a future paper. 

VI. CONCLUSIONS 

A novel Three-Port UPS formed by linking a three-phase PWM 
rectifier, a three-phase PWM inverter  and a battery energy storage 
via a single three-winding isolation transformer and corresponding 
full-bridge converter cells is proposed. 
According to the theoretical analysis and simulation results the 
converter system shows the following features: 

1) The bidirectional power flow between the ports can 
controlled by the phase-shift of the individual full-bridge 
cells; 

2) A utilization of duty cycle control allows to operate the 
system with minimum power semiconductor losses  

3) For employing a decoupling network, the power of the 
ports can be controlled independently, where operation of 
the system in the optimum region is ensured by proper 
pre-control derived from analyzing the system behavior 
with restriction to the fundamentals of the voltages and 
currents.  

In a next step a DSP-controlled 5kW laboratory model of the system 
shown in Fig.1 will be realized for verifying the proposed control 
concept. Furthermore, the optimization of the system behavior will 
be extended to a proper selection of V1 and V2 for a given operating 
point. 
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